Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import requests | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer, util | |
import logging | |
# Enable detailed logging | |
logging.basicConfig(level=logging.INFO) | |
# Hugging Face Inference Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Load a pre-trained model for sentence similarity | |
similarity_model = SentenceTransformer('all-mpnet-base-v2') | |
### Function to analyze issues and provide solutions | |
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> str: | |
""" | |
Analyze issues and provide solutions. | |
Args: | |
issue_text (str): The issue text. | |
model_name (str): The model name. | |
severity (str, optional): The severity of the issue. Defaults to None. | |
programming_language (str, optional): The programming language. Defaults to None. | |
Returns: | |
str: The analyzed issue and solution. | |
""" | |
logging.info("Analyzing issue: {} with model: {}".format(issue_text, model_name)) | |
prompt = """Issue: {} | |
Severity: {} | |
Programming Language: {} | |
Please provide a comprehensive resolution in the following format: | |
## Problem Summary: | |
(Concise summary of the issue) | |
## Root Cause Analysis: | |
(Possible reasons for the issue) | |
## Solution Options: | |
1. **Option 1:** (Description) | |
- Pros: (Advantages) | |
- Cons: (Disadvantages) | |
2. **Option 2:** (Description) | |
- Pros: (Advantages) | |
- Cons: (Disadvantages) | |
## Recommended Solution: | |
(The best solution with justification) | |
## Implementation Steps: | |
1. (Step 1) | |
2. (Step 2) | |
3. (Step 3) | |
## Verification Steps: | |
1. (Step 1) | |
2. (Step 2) | |
""".format(issue_text, severity, programming_language) | |
try: | |
nlp = pipeline("text-generation", model=model_name, max_length=1000) # Increase max_length | |
logging.info("Pipeline created with model: {}".format(model_name)) | |
result = nlp(prompt) | |
logging.info("Model output: {}".format(result)) | |
return result[0]['generated_text'] | |
except Exception as e: | |
logging.error("Error analyzing issue with model {}: {}".format(model_name, e)) | |
return "Error analyzing issue with model {}: {}".format(model_name, e) | |
### Function to find related issues | |
def find_related_issues(issue_text: str, issues: list) -> list: | |
""" | |
Find related issues. | |
Args: | |
issue_text (str): The issue text. | |
issues (list): The list of issues. | |
Returns: | |
list: The list of related issues. | |
""" | |
logging.info("Finding related issues for: {}".format(issue_text)) | |
issue_embedding = similarity_model.encode(issue_text) | |
related_issues = [] | |
for issue in issues: | |
title_embedding = similarity_model.encode(issue['title']) | |
similarity = util.cos_sim(issue_embedding, title_embedding)[0][0] | |
related_issues.append((issue, similarity)) | |
related_issues = sorted(related_issues, key=lambda x: x[1], reverse=True) | |
logging.info("Found related issues: {}".format(related_issues)) | |
return related_issues[:3] # Return top 3 most similar issues | |
### Function to fetch GitHub issues | |
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str) -> list: | |
""" | |
Fetch GitHub issues. | |
Args: | |
github_api_token (str): The GitHub API token. | |
github_username (str): The GitHub username. | |
github_repository (str): The GitHub repository. | |
Returns: | |
list: The list of GitHub issues. | |
""" | |
logging.info("Fetching GitHub issues for: {}/{}".format(github_username, github_repository)) | |
url = "https://api.github.com/repos/{}/{}/issues".format(github_username, github_repository) | |
headers = { | |
"Authorization": "Bearer {}".format(github_api_token), | |
"Accept": "application/vnd.github.v3+json" | |
} | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
issues = response.json() | |
logging.info("Fetched issues: {}".format(issues)) | |
return issues | |
else: | |
logging.error("Error fetching issues: {}".format(response.status_code)) | |
raise Exception("Error fetching issues: {}".format(response.status_code)) | |
### Function to handle chat responses | |
def respond( | |
command: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
github_api_token: str, | |
github_username: str, | |
github_repository: str, | |
selected_model: str, | |
severity: str, | |
programming_language: str, | |
) -> str: | |
""" | |
Handle chat responses. | |
Args: | |
command (str): The command. | |
history (list[tuple[str, str]]): The chat history. | |
system_message (str): The system message. | |
max_tokens (int): The maximum number of tokens. | |
temperature (float): The temperature. | |
top_p (float): The top-p value. | |
github_api_token (str): The GitHub API token. | |
github_username (str): The GitHub username. | |
github_repository (str): The GitHub repository. | |
selected_model (str): The selected model. | |
severity (str): The severity. | |
programming_language (str): The programming language. | |
Returns: | |
str: The chat response. | |
""" | |
global GITHUB_API_TOKEN | |
GITHUB_API_TOKEN = github_api_token | |
global issues | |
issues = [] | |
messages = [{"role": "system", "content": system_message}] | |
logging.info("System message: {}".format(system_message)) | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
logging.info("User message: {}".format(user_msg)) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
logging.info("Assistant message: {}".format(assistant_msg)) | |
logging.info("Command received: {}".format(command)) | |
if command == "/github": | |
if not github_api_token: | |
return "Please enter your GitHub API token first. <https://github.com/settings/tokens>" | |
else: | |
try: | |
issues = fetch_github_issues(github_api_token, github_username, github_repository) | |
issue_list = "\n".join(["{}. {}".format(i+1, issue['title']) for i, issue in enumerate(issues)]) | |
return "Available GitHub Issues:\n{}\n\nEnter the issue number to analyze:".format(issue_list) | |
except Exception as e: | |
logging.error("Error fetching GitHub issues: {}".format(e)) | |
return "Error fetching GitHub issues: {}".format(e) | |
elif command == "/help": | |
help_message = """Available commands: | |
- `/github`: Analyze a GitHub issue | |
- `/help`: Show this help message | |
- `/generate_code [code description]`: Generate code based on the description | |
- `/explain_concept [concept]`: Explain a concept | |
- `/write_documentation [topic]`: Write documentation for a given topic | |
- `/translate_code [code] to [target language]`: Translate code to another language""" | |
return help_message # Yield the pre-formatted help message | |
elif command.isdigit() and issues: | |
try: | |
issue_number = int(command) - 1 | |
issue = issues[issue_number] | |
issue_text = issue['title'] + "\n\n" + issue['body'] | |
resolution = analyze_issues(issue_text, selected_model, severity, programming_language) | |
# Find and display related issues | |
related_issues = find_related_issues(issue_text, issues) | |
related_issue_text = "\n".join( | |
["- {} (Similarity: {:.2f})".format(issue['title'], similarity) for issue, similarity in related_issues] | |
) | |
return "Resolution for Issue '{}':\n{}\n\nRelated Issues:\n{}".format(issue['title'], resolution, related_issue_text) | |
except Exception as e: | |
logging.error("Error analyzing issue: {}".format(e)) | |
return "Error analyzing issue: {}".format(e) | |
elif command.startswith("/generate_code"): | |
# Extract the code description from the command | |
code_description = command.replace("/generate_code", "").strip() | |
if not code_description: | |
return "Please provide a description of the code you want to generate." | |
else: | |
prompt = "Generate code for the following: {}\nProgramming Language: {}".format(code_description, programming_language) | |
try: | |
generated_code = analyze_issues(prompt, selected_model) | |
code_output = "<pre>{}</pre>".format(generated_code) | |
return code_output # Yield the formatted string | |
except Exception as e: | |
logging.error("Error generating code: {}".format(e)) | |
return "Error generating code: {}".format(e) | |
elif command.startswith("/explain_concept"): | |
concept = command.replace("/explain_concept", "").strip() | |
if not concept: | |
return "Please provide a concept to explain." | |
else: | |
prompt = "Explain the concept of {} in detail.".format(concept) | |
try: | |
explanation = analyze_issues(prompt, selected_model) | |
return "<pre>{}</pre>".format(explanation) | |
except Exception as e: | |
logging.error("Error explaining concept: {}".format(e)) | |
return "Error explaining concept: {}".format(e) | |
elif command.startswith("/write_documentation"): | |
topic = command.replace("/write_documentation", "").strip() | |
if not topic: | |
return "Please provide a topic for the documentation." | |
else: | |
prompt = "Write documentation for the following topic: {}\nProgramming Language: {}".format(topic, programming_language) | |
try: | |
documentation = analyze_issues(prompt, selected_model) | |
return "<pre>{}</pre>".format(documentation) | |
except Exception as e: | |
logging.error("Error writing documentation: {}".format(e)) | |
return "Error writing documentation: {}".format(e) | |
elif command.startswith("/translate_code"): | |
try: | |
code_and_language = command.replace("/translate_code", "").strip().split(" to ") | |
code = code_and_language[0] | |
target_language = code_and_language[1] | |
prompt = "Translate the following code to {}:\n\n{}".format(target_language, code) | |
try: | |
translated_code = analyze_issues(prompt, selected_model) | |
code_output = "<pre>{}</pre>".format(translated_code) | |
return code_output # Yield the formatted string | |
except Exception as e: | |
logging.error("Error translating code: {}".format(e)) | |
return "Error translating code: {}".format(e) | |
except Exception as e: | |
logging.error("Error parsing translate_code command: {}".format(e)) | |
return "Error parsing translate_code command: {}".format(e) | |
else: | |
messages.append({"role": "user", "content": command}) | |
logging.info(f"User message: {command}") | |
response = "" | |
try: | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
logging.info(f"Received message from chat completion: {message}") | |
token = message.choices[0].delta.content | |
response += token | |
return response | |
except Exception as e: | |
logging.error(f"Error during chat completion: {e}") | |
return "An error occurred: {}".format(e) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
github_api_token = gr.Textbox(label="GitHub API Token", type="password") | |
github_username = gr.Textbox(label="GitHub Username") | |
github_repository = gr.Textbox(label="GitHub Repository") | |
# Define system_message here, after github_username and github_repository are defined | |
system_message = gr.Textbox( | |
value="You are GitBot, the Github project guardian angel. You resolve issues and propose implementation of feature requests", | |
label="System message", | |
) | |
# Model Selection Dropdown | |
model_dropdown = gr.Dropdown( | |
choices=[ | |
"Xenova/gpt-4o", | |
"acecalisto3/InstructiPhi", | |
"DevShubham/Codellama-13B-Instruct-GGUF", | |
"ricardo-larosa/SWE_Lite_dev-CodeLlama-34b", | |
"DevsDoCode/Gemma-2b-Code-Instruct-Finetune-v0.1", | |
"google/flan-t5-xxl", | |
"facebook/bart-large-cnn", | |
"microsoft/CodeBERT-base", | |
"Salesforce/codegen-350M-mono", | |
"bigcode/starcoder" | |
], | |
label="Select Model for Issue Resolution", | |
value="microsoft/CodeBERT-base" | |
) | |
# Severity Dropdown | |
severity_dropdown = gr.Dropdown( | |
choices=["Critical", "Major", "Minor", "Trivial"], | |
label="Severity", | |
value=None # Default to no severity selected | |
) | |
# Programming Language Textbox | |
programming_language_textbox = gr.Textbox(label="Programming Language") | |
# Command Dropdown | |
command_dropdown = gr.Dropdown( | |
choices=[ | |
"/github", | |
"/help", | |
"/generate_code", | |
"/explain_concept", | |
"/write_documentation", | |
"/translate_code" | |
], | |
label="Select Command", | |
) | |
chatbot = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
command_dropdown, # Use command_dropdown instead of a regular message input | |
system_message, | |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.71, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=1.1, | |
label="Top-p (nucleus sampling)", | |
), | |
github_api_token, | |
github_username, | |
github_repository, | |
model_dropdown, | |
severity_dropdown, | |
programming_language_textbox | |
], | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860, show_header=False, debug=True) |