Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer, util | |
import os | |
import requests | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
model_name = "enricoros/big-agi" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Constants for enhanced organization | |
GITHUB_API_BASE_URL = "https://api.github.com/repos" | |
DEFAULT_MODEL = "microsoft/CodeBERT-base" | |
MAX_RELATED_ISSUES = 3 | |
# Load a pre-trained model for sentence similarity | |
similarity_model = SentenceTransformer('all-mpnet-base-v2') | |
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> str: | |
# Initialize the model | |
model = pipeline("text-generation", model=model_name) | |
# Generate a response | |
response = model( | |
f"{system_message}\n{issue_text}\nAssistant: ", | |
max_length=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_k=top_p, | |
) | |
# Extract the assistant's response | |
assistant_response = response[0]['generated_text'].strip() | |
# Analyze the response | |
if "Severity" in assistant_response: | |
severity = assistant_response.split(":")[1].strip() | |
if "Programming Language" in assistant_response: | |
programming_language = assistant_response.split(":")[1].strip() | |
return { | |
'assistant_response': assistant_response, | |
'severity': severity, | |
'programming_language': programming_language, | |
} | |
def find_related_issues(issue_text: str, issues: list) -> list: | |
# Calculate the similarity between the issue and other issues | |
issue_embedding = similarity_model.encode(issue_text) | |
similarities = [util.cos_sim(issue_embedding, similarity_model.encode(issue['title'])) for issue in issues] | |
# Sort the issues by similarity | |
sorted_issues = sorted(enumerate(similarities), key=lambda x: x[1], reverse=True) | |
# Select the top related issues | |
related_issues = [issues[i] for i, similarity in sorted_issues[:MAX_RELATED_ISSUES]] | |
return related_issues | |
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str) -> list: | |
# Fetch the issues from the GitHub API | |
headers = {'Authorization': f'token {github_api_token}'} | |
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues" | |
response = requests.get(url, headers=headers) | |
# Parse the JSON response | |
issues = response.json() | |
return issues | |
def respond( | |
command, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
github_api_token, | |
github_username, | |
github_repository, | |
selected_model, | |
severity, | |
programming_language, | |
*args, | |
**kwargs, | |
) -> dict: | |
# Initialize the model | |
model = pipeline("text-generation", model="enricoros/big-agi") | |
# Generate a response | |
response = model( | |
f"{system_message}\n{command}\n{history}\n{github_username}/{github_repository}\n{severity}\n{programming_language}\nAssistant: ", | |
max_length=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_k=top_p, | |
) | |
# Extract the assistant's response | |
assistant_response = response[0]['generated_text'].strip() | |
return { | |
'assistant_response': assistant_response, | |
'severity': severity, | |
'programming_language': programming_language, | |
} | |
) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
github_api_token = gr.Textbox(label="GitHub API Token", type="password") | |
github_username = gr.Textbox(label="GitHub Username") | |
github_repository = gr.Textbox(label="GitHub Repository") | |
system_message = gr.Textbox( | |
value="You are GitBot, the Github project guardian angel. You resolve issues and propose implementation of feature requests", | |
label="System message", | |
) | |
model_dropdown = gr.Dropdown( | |
choices=[ | |
"microsoft/CodeBERT-base", | |
"Salesforce/codegen-350M-mono", | |
], | |
label="Select Model for Issue Resolution", | |
value=DEFAULT_MODEL, | |
) | |
severity_dropdown = gr.Dropdown( | |
choices=["Critical", "Major", "Minor", "Trivial"], | |
label="Severity", | |
value=None, | |
) | |
programming_language_textbox = gr.Textbox(label="Programming Language") | |
command_dropdown = gr.Dropdown( | |
choices=[ | |
"/github", | |
"/help", | |
"/generate_code", | |
"/explain_concept", | |
"/write_documentation", | |
"/translate_code", | |
], | |
label="Select Command", | |
) | |
chatbot = MyChatbot( | |
respond, | |
additional_inputs=[ | |
command_dropdown, | |
system_message, | |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.71, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.01, | |
label="Top-p (nucleus sampling)", | |
), | |
github_api_token, | |
github_username, | |
github_repository, | |
model_dropdown, | |
severity_dropdown, | |
programming_language_textbox, | |
], | |
) | |
if __name__ == "__main__": | |
demo.queue().launch( | |
share=True, | |
server_name="0.0.0.0", | |
server_port=7860 | |
) |