Spaces:
Runtime error
Runtime error
File size: 12,018 Bytes
2582b22 7e568ab 2582b22 7e568ab 2582b22 afe9aee 2582b22 7e568ab afe9aee 7e568ab afe9aee 2582b22 afe9aee 7e568ab 0717322 2582b22 0717322 2582b22 7e568ab 0717322 afe9aee 0717322 afe9aee 0717322 afe9aee 7e568ab 0717322 afe9aee 0717322 afe9aee 0717322 7e568ab afe9aee 0717322 afe9aee 0717322 2582b22 0717322 7e568ab 0717322 7e568ab 0717322 afe9aee 0717322 afe9aee 0717322 7e568ab afe9aee 0717322 7e568ab afe9aee 7e568ab 0717322 7e568ab 0717322 afe9aee 2582b22 7e568ab 2582b22 c161064 afe9aee c161064 0717322 c161064 afe9aee 7e568ab c161064 afe9aee c161064 afe9aee 0717322 afe9aee c161064 afe9aee c161064 afe9aee c161064 0717322 c161064 2582b22 7e568ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import threading
import time
import gradio as gr
import logging
import json
import re
import torch
import tempfile
import os
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from PIL import Image
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_PORT = 7860
MODEL_CACHE_DIR = Path("model_cache")
TEMPLATE_DIR = Path("templates")
TEMP_DIR = Path("temp")
DATABASE_PATH = Path("code_database.json")
# Ensure directories exist
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
directory.mkdir(exist_ok=True, parents=True)
@dataclass
class Template:
code: str
description: str
components: List[str] = field(default_factory=list)
class TemplateManager:
def __init__(self, template_dir: Path):
self.template_dir = template_dir
self.templates: Dict[str, Template] = {}
def load_templates(self):
for file_path in self.template_dir.glob("*.json"):
try:
with open(file_path, 'r') as f:
template_data = json.load(f)
template = Template(**template_data)
self.templates[template_data['description']] = template
except json.JSONDecodeError as e:
logger.error(f"Error loading template from {file_path}: {e}")
except KeyError as e:
logger.error(f"Missing key in template file {file_path}: {e}")
def save_template(self, name: str, template: Template) -> bool:
file_path = self.template_dir / f"{name}.json"
try:
with open(file_path, 'w') as f:
json.dump(dataclasses.asdict(template), f, indent=2)
return True
except Exception as e:
logger.error(f"Error saving template to {file_path}: {e}")
return False
def get_template(self, name: str) -> Optional[str]:
return self.templates.get(name, {}).get('code', "")
class RAGSystem:
def __init__(self, model_name: str = "gpt2", device: str = "cuda" if torch.cuda.is_available() else "cpu", embedding_model="all-mpnet-base-v2"):
self.device = device
self.embedding_model = None
self.code_embeddings = None
self.index = None
self.database = {'codes': [], 'embeddings': []}
self.pipe = None
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=MODEL_CACHE_DIR)
self.model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=MODEL_CACHE_DIR).to(device)
self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, device=self.device)
self.embedding_model = SentenceTransformer(embedding_model)
self.load_database()
logger.info("RAG system initialized successfully.")
except Exception as e:
logger.error(f"Error loading language model or embedding model: {e}. Falling back to placeholder generation.")
def load_database(self):
if DATABASE_PATH.exists():
try:
with open(DATABASE_PATH, 'r', encoding='utf-8') as f:
self.database = json.load(f)
self.code_embeddings = np.array(self.database['embeddings'])
logger.info("Loaded code database from file.")
self._build_index()
except (json.JSONDecodeError, KeyError) as e:
logger.error(f"Error loading code database: {e}. Creating new database.")
self.database = {'codes': [], 'embeddings': []}
self.code_embeddings = np.array([])
self._build_index()
else:
logger.info("Code database does not exist. Creating new database.")
self.database = {'codes': [], 'embeddings': []}
self.code_embeddings = np.array([])
self._build_index()
if self.embedding_model and len(self.database['codes']) != len(self.database['embeddings']):
logger.warning("Mismatch between number of codes and embeddings, rebuilding embeddings.")
self.rebuild_embeddings()
elif self.embedding_model is None:
logger.warning ("Embeddings are not supported in this context.")
def _build_index(self):
if len(self.code_embeddings) > 0 and self.embedding_model:
self.index = faiss.IndexFlatL2(self.code_embeddings.shape[1]) # L2 distance
self.index.add(self.code_embeddings)
def add_to_database(self, code: str):
try:
if self.embedding_model is None:
raise ValueError("Embedding model not loaded.")
embedding = self.embedding_model.encode(code)
self.database['codes'].append(code)
self.database['embeddings'].append(embedding.tolist())
self.code_embeddings = np.vstack((self.code_embeddings, embedding)) if len(self.code_embeddings) > 0 else np.array([embedding])
self.index.add(np.array([embedding]))
self.save_database()
logger.info(f"Added code snippet to database. Total size: {len(self.database['codes'])}.")
except Exception as e:
logger.error(f"Error adding to database: {e}")
def save_database(self):
try:
with open(DATABASE_PATH, 'w', encoding='utf-8') as f:
json.dump(self.database, f, indent=2)
logger.info(f"Saved database to {DATABASE_PATH}.")
except Exception as e:
logger.error(f"Error saving database: {e}")
def rebuild_embeddings(self):
try:
if self.embedding_model is None:
raise ValueError("Embedding model not loaded.")
embeddings = self.embedding_model.encode(self.database['codes'])
self.code_embeddings = embeddings
self.database['embeddings'] = embeddings.tolist()
self._build_index()
self.save_database()
logger.info("Rebuilt and saved embeddings to the database.")
except Exception as e:
logger.error(f"Error rebuilding embeddings: {e}")
def retrieve_similar_code(self, description: str, top_k: int = 3) -> List[str]:
if self.embedding_model is None or self.index is None:
logger.warning("Embedding model or index not available. Cannot retrieve similar code.")
return []
try:
embedding = self.embedding_model.encode(description)
D, I = self.index.search(np.array([embedding]), top_k)
logger.info(f"Retrieved {top_k} similar code snippets for description: {description}.")
return [self.database['codes'][i] for i in I[0]]
except Exception as e:
logger.error(f"Error retrieving similar code: {e}")
return []
def generate_code(self, description: str, template_code: str) -> str:
retrieved_codes = self.retrieve_similar_code(description)
prompt = f"Description: {description} Retrieved Code Snippets: {''.join([f'```python {code} ```' for code in retrieved_codes])} Template: ```python {template_code} ``` Generated Code: ```python "
if self.pipe:
try:
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
generated_code = generated_text.split("Generated Code:")[1].strip().split('```')[0]
logger.info("Code generated successfully.")
return generated_code
except Exception as e:
logger.error(f"Error generating code with language model: {e}. Returning template code.")
return template_code
else:
logger.warning("Text generation pipeline is not available. Returning placeholder code.")
return f"# Placeholder code generation. Description: {description} {template_code}"
class GradioInterface:
def __init__(self):
self.template_manager = TemplateManager(TEMPLATE_DIR)
self.template_manager.load_templates()
self.rag_system = RAGSystem()
def _extract_components(self, code: str) -> List[str]:
components = []
function_matches = re.findall(r'def (\w+)\(', code) # added parenthesis for more accuracy
components.extend(function_matches)
class_matches = re.findall(r'class (\w+)\:', code) # added colon for more accuracy
components.extend(class_matches)
logger.info(f"Extracted components: {components}")
return components
def _get_template_choices(self) -> List[str]:
return list(self.template_manager.templates.keys())
def launch(self, **kwargs):
with gr.Blocks() as interface:
gr.Markdown("## Code Generation Interface")
description_input = gr.Textbox(label="Description", placeholder="Enter a description for the code you want to generate.")
code_output = gr.Textbox(label="Generated Code", interactive=False)
generate_button = gr.Button("Generate Code")
template_choice = gr.Dropdown(label="Select Template", choices=self._get_template_choices(), value=None)
save_button = gr.Button("Save as Template")
status_output = gr.Textbox(label="Status", interactive=False)
def generate_code_wrapper(description, template_choice):
try:
template_code = self.template_manager.get_template(template_choice) if template_choice else ""
generated_code = self.rag_system.generate_code(description, template_code)
return generated_code, "Code generated successfully."
except Exception as e:
return "", f"Error generating code: {e}"
def save_template_wrapper(code, name, description):
try:
if not name:
return code, "Template name cannot be empty."
if not code:
return code, "Code cannot be empty."
components = self._extract_components(code)
template = Template(code=code, description=name, components=components)
if self.template_manager.save_template(name, template):
self.rag_system.add_to_database(code)
return code, f"Template '{name}' saved successfully."
else:
return code, "Failed to save template."
except Exception as e:
return code, f"Error saving template: {e}"
generate_button.click(
fn=generate_code_wrapper,
inputs=[description_input, template_choice],
outputs=[code_output, status_output]
)
save_button.click(
fn=save_template_wrapper,
inputs=[code_output, template_choice, description_input],
outputs=[code_output, status_output]
)
logger.info("Launching Gradio interface.")
interface.launch(**kwargs)
def main():
logger.info("=== Application Startup ===")
try:
interface = GradioInterface()
interface.launch(
server_port=DEFAULT_PORT,
share=False,
debug=True
)
except Exception as e:
logger.error(f"Application error: {e}")
raise
finally:
logger.info("=== Application Shutdown ===")
if __name__ == "__main__":
main() |