import os import requests import time import re from db_utils import get_schema, execute_sql # Hugging Face Inference API endpoint for Qwen2.5-Coder API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-7B-Instruct" def query_huggingface_api(prompt, max_retries=3): """Query the Hugging Face Inference API""" hf_token = os.getenv("HF_TOKEN") if not hf_token: raise ValueError("HF_TOKEN not found in environment variables") headers = {"Authorization": f"Bearer {hf_token}"} payload = { "inputs": prompt, "parameters": { "max_new_tokens": 200, "temperature": 0.1, "do_sample": False, "return_full_text": False, "stop": ["###", "\n\n"] } } for attempt in range(max_retries): try: print(f"=== DEBUG: API attempt {attempt + 1}") response = requests.post(API_URL, headers=headers, json=payload, timeout=30) print(f"=== DEBUG: API Response Status: {response.status_code}") if response.status_code == 200: result = response.json() print(f"=== DEBUG: API Response: {result}") if isinstance(result, list) and len(result) > 0: generated_text = result[0].get("generated_text", "").strip() else: generated_text = str(result).strip() return generated_text elif response.status_code == 503: wait_time = 20 * (attempt + 1) print(f"=== DEBUG: Model loading, waiting {wait_time} seconds...") time.sleep(wait_time) continue else: error_msg = f"API Error {response.status_code}: {response.text}" print(f"=== DEBUG: {error_msg}") if attempt == max_retries - 1: raise Exception(error_msg) except requests.exceptions.Timeout: print(f"=== DEBUG: Timeout on attempt {attempt + 1}") if attempt == max_retries - 1: raise Exception("Request timed out after multiple attempts") time.sleep(5) except Exception as e: print(f"=== DEBUG: Exception on attempt {attempt + 1}: {e}") if attempt == max_retries - 1: raise e time.sleep(5) raise Exception("Failed to get response after all retries") def extract_user_requested_limit(nl_query): """Extract user-requested number from natural language query""" patterns = [ r'\b(\d+)\s+(?:ships?|vessels?|boats?|records?|results?|entries?|names?)\b', r'(?:show|list|find|get)\s+(?:me\s+)?(?:the\s+)?(?:top\s+|first\s+)?(\d+)', r'(?:names\s+of\s+)(\d+)\s+', r'\b(\d+)\s+(?:oldest|newest|biggest|smallest|largest)', ] for pattern in patterns: match = re.search(pattern, nl_query, re.IGNORECASE) if match: return int(match.group(1)) return None def clean_sql_output(sql_text, user_limit=None): """Clean and validate SQL output from the model""" sql_text = sql_text.strip() # Remove markdown formatting if sql_text.startswith("```"): lines = sql_text.split('\n') sql_text = '\n'.join(lines[1:-1]) if len(lines) > 2 else sql_text # Handle multiple lines - take the SQL part lines = sql_text.split('\n') sql = "" for line in lines: line = line.strip() if line and (line.upper().startswith('SELECT') or sql): sql += line + " " if line.endswith(';'): break if not sql: # If no SELECT found, take the first non-empty line for line in lines: line = line.strip() if line: sql = line break sql = sql.strip().rstrip(';') # Apply user-requested limit if user_limit: sql = re.sub(r'\s+LIMIT\s+\d+', '', sql, flags=re.IGNORECASE) sql += f" LIMIT {user_limit}" return sql def text_to_sql(nl_query): """Convert natural language to SQL using Qwen2.5-Coder via HF Inference API""" try: print(f"=== DEBUG: Starting text_to_sql with query: {nl_query}") # Get database schema try: schema = get_schema() print(f"=== DEBUG: Schema retrieved, length: {len(schema)}") except Exception as e: print(f"=== DEBUG: Schema error: {e}") return f"Error: Database schema access failed: {str(e)}", [] # Extract user limit user_limit = extract_user_requested_limit(nl_query) print(f"=== DEBUG: Extracted user limit: {user_limit}") # Create optimized prompt for Qwen2.5-Coder prompt = f"""<|im_start|>system You are an expert SQL developer. Generate PostgreSQL queries based on natural language questions. Database Schema: {schema[:1500]} Rules: - Return ONLY the SQL query - Use PostgreSQL syntax - Be precise with table and column names - Do not include explanations or markdown formatting <|im_end|> <|im_start|>user {nl_query} <|im_end|> <|im_start|>assistant """ print("=== DEBUG: Calling Qwen2.5-Coder API...") generated_sql = query_huggingface_api(prompt) print(f"=== DEBUG: Generated SQL raw: {generated_sql}") if not generated_sql: return "Error: No SQL generated from the model", [] # Clean the SQL output sql = clean_sql_output(generated_sql, user_limit) print(f"=== DEBUG: Final cleaned SQL: {sql}") if not sql or not sql.upper().startswith('SELECT'): return f"Error: Invalid SQL generated: {sql}", [] # Execute SQL print("=== DEBUG: Executing SQL...") try: results = execute_sql(sql) print(f"=== DEBUG: SQL executed successfully, {len(results)} results") return sql, results except Exception as e: print(f"=== DEBUG: SQL execution error: {e}") return f"Error: SQL execution failed: {str(e)}", [] except Exception as e: print(f"=== DEBUG: General error in text_to_sql: {e}") return f"Error: {str(e)}", []