Spaces:
Running
Running
Switch to HF Inference API approach - eliminate model loading
Browse files- Dockerfile +1 -15
- pipeline.py +115 -107
- requirements.txt +2 -5
Dockerfile
CHANGED
@@ -6,28 +6,14 @@ RUN apt-get update && apt-get install -y \
|
|
6 |
build-essential \
|
7 |
libpq-dev \
|
8 |
curl \
|
9 |
-
git \
|
10 |
&& rm -rf /var/lib/apt/lists/*
|
11 |
|
12 |
COPY requirements.txt .
|
13 |
-
|
14 |
-
# Upgrade pip and install dependencies
|
15 |
-
RUN pip install --upgrade pip
|
16 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
17 |
|
18 |
COPY app.py pipeline.py db_utils.py ./
|
19 |
|
20 |
-
# Set up cache directory with proper permissions
|
21 |
-
RUN mkdir -p /tmp/cache/huggingface && \
|
22 |
-
chmod -R 777 /tmp/cache/huggingface
|
23 |
-
|
24 |
-
# Environment variables
|
25 |
-
ENV HF_HOME=/tmp/cache/huggingface
|
26 |
-
ENV TRANSFORMERS_CACHE=/tmp/cache/huggingface
|
27 |
-
ENV HF_DATASETS_CACHE=/tmp/cache/huggingface
|
28 |
ENV PORT=8501
|
29 |
-
ENV OMP_NUM_THREADS=4
|
30 |
-
ENV TOKENIZERS_PARALLELISM=false
|
31 |
|
32 |
EXPOSE 8501
|
33 |
|
|
|
6 |
build-essential \
|
7 |
libpq-dev \
|
8 |
curl \
|
|
|
9 |
&& rm -rf /var/lib/apt/lists/*
|
10 |
|
11 |
COPY requirements.txt .
|
12 |
+
RUN pip install --upgrade pip && pip install --no-cache-dir -r requirements.txt
|
|
|
|
|
|
|
13 |
|
14 |
COPY app.py pipeline.py db_utils.py ./
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
ENV PORT=8501
|
|
|
|
|
17 |
|
18 |
EXPOSE 8501
|
19 |
|
pipeline.py
CHANGED
@@ -1,132 +1,140 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
|
|
|
4 |
from db_utils import get_schema, execute_sql
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
tokenizer = None
|
9 |
|
10 |
-
def
|
11 |
-
"""
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
try:
|
18 |
-
|
19 |
-
|
20 |
-
load_in_4bit=True,
|
21 |
-
bnb_4bit_compute_dtype=torch.float16,
|
22 |
-
bnb_4bit_use_double_quant=True,
|
23 |
-
bnb_4bit_quant_type="nf4"
|
24 |
-
)
|
25 |
-
|
26 |
-
# Load tokenizer
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
-
"defog/sqlcoder-7b-2",
|
29 |
-
trust_remote_code=True,
|
30 |
-
cache_dir="/tmp/cache/huggingface"
|
31 |
-
)
|
32 |
-
|
33 |
-
# Load model with quantization
|
34 |
-
model = AutoModelForCausalLM.from_pretrained(
|
35 |
-
"defog/sqlcoder-7b-2",
|
36 |
-
quantization_config=quantization_config,
|
37 |
-
device_map="auto",
|
38 |
-
trust_remote_code=True,
|
39 |
-
torch_dtype=torch.float16,
|
40 |
-
cache_dir="/tmp/cache/huggingface"
|
41 |
-
)
|
42 |
-
|
43 |
-
print("SQLCoder model loaded successfully!")
|
44 |
-
return model, tokenizer
|
45 |
|
46 |
-
|
47 |
-
print(f"Error loading SQLCoder model: {e}")
|
48 |
-
raise e
|
49 |
-
|
50 |
-
def generate_sql(nl_query, schema):
|
51 |
-
"""Generate SQL using SQLCoder with proper prompting"""
|
52 |
-
prompt = f"""### Task
|
53 |
Generate a PostgreSQL query to answer this question: {nl_query}
|
54 |
|
55 |
### Database Schema
|
56 |
-
The query will run on a database with the following schema:
|
57 |
{schema}
|
58 |
|
59 |
### Instructions
|
60 |
-
- Return only the SQL query
|
61 |
-
- Use
|
62 |
-
-
|
63 |
|
64 |
-
### SQL Query:
|
65 |
-
"""
|
66 |
-
return prompt
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
try:
|
71 |
-
# Load model if not already loaded
|
72 |
-
model, tokenizer = load_model()
|
73 |
-
|
74 |
-
# Get database schema
|
75 |
-
schema = get_schema()
|
76 |
-
|
77 |
-
# Create the prompt
|
78 |
-
prompt = generate_sql(nl_query, schema)
|
79 |
-
|
80 |
-
# Tokenize input
|
81 |
-
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
inputs = inputs.to(device)
|
86 |
|
87 |
-
|
88 |
-
with torch.no_grad():
|
89 |
-
outputs = model.generate(
|
90 |
-
inputs,
|
91 |
-
max_new_tokens=200,
|
92 |
-
num_beams=4,
|
93 |
-
temperature=0.1,
|
94 |
-
do_sample=False,
|
95 |
-
pad_token_id=tokenizer.eos_token_id,
|
96 |
-
eos_token_id=tokenizer.eos_token_id
|
97 |
-
)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Extract just the SQL part (after the prompt)
|
103 |
-
sql_start = generated_text.find("### SQL Query:") + len("### SQL Query:")
|
104 |
-
sql = generated_text[sql_start:].strip()
|
105 |
-
|
106 |
-
# Clean up the SQL (remove any extra text after the query)
|
107 |
-
sql_lines = sql.split('\n')
|
108 |
-
sql = sql_lines[0].strip() if sql_lines else sql.strip()
|
109 |
-
|
110 |
-
# Remove any trailing semicolon if present and clean
|
111 |
-
sql = sql.rstrip(';').strip()
|
112 |
-
|
113 |
-
# Basic validation
|
114 |
-
if not sql or not sql.lower().startswith('select'):
|
115 |
-
raise ValueError(f"Generated invalid SQL: {sql}")
|
116 |
|
117 |
print(f"Generated SQL: {sql}")
|
118 |
-
|
119 |
-
# Execute the SQL
|
120 |
results = execute_sql(sql)
|
121 |
-
|
122 |
return sql, results
|
123 |
|
124 |
except Exception as e:
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
# Initialize model on import (optional - can be lazy loaded)
|
129 |
-
try:
|
130 |
-
load_model()
|
131 |
-
except Exception as e:
|
132 |
-
print(f"Model will be loaded on first use due to: {e}")
|
|
|
1 |
import os
|
2 |
+
import requests
|
3 |
+
import time
|
4 |
+
import re
|
5 |
from db_utils import get_schema, execute_sql
|
6 |
|
7 |
+
# Hugging Face Inference API endpoint
|
8 |
+
API_URL = "https://api-inference.huggingface.co/models/defog/sqlcoder-7b-2"
|
|
|
9 |
|
10 |
+
def query_huggingface_api(prompt, max_retries=3):
|
11 |
+
"""Query the Hugging Face Inference API"""
|
12 |
+
hf_token = os.getenv("HF_TOKEN")
|
13 |
+
if not hf_token:
|
14 |
+
raise ValueError("HF_TOKEN not found in environment variables. Add it to your Space secrets.")
|
15 |
|
16 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
17 |
+
payload = {
|
18 |
+
"inputs": prompt,
|
19 |
+
"parameters": {
|
20 |
+
"max_new_tokens": 200,
|
21 |
+
"temperature": 0.1,
|
22 |
+
"do_sample": False,
|
23 |
+
"return_full_text": False
|
24 |
+
}
|
25 |
+
}
|
26 |
|
27 |
+
for attempt in range(max_retries):
|
28 |
+
try:
|
29 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=30)
|
30 |
+
|
31 |
+
if response.status_code == 200:
|
32 |
+
result = response.json()
|
33 |
+
if isinstance(result, list) and len(result) > 0:
|
34 |
+
return result[0].get("generated_text", "").strip()
|
35 |
+
return str(result).strip()
|
36 |
+
|
37 |
+
elif response.status_code == 503:
|
38 |
+
wait_time = 20 * (attempt + 1)
|
39 |
+
print(f"Model loading, waiting {wait_time} seconds...")
|
40 |
+
time.sleep(wait_time)
|
41 |
+
continue
|
42 |
+
|
43 |
+
else:
|
44 |
+
error_msg = f"API Error {response.status_code}: {response.text}"
|
45 |
+
if attempt == max_retries - 1:
|
46 |
+
raise Exception(error_msg)
|
47 |
+
|
48 |
+
except requests.exceptions.Timeout:
|
49 |
+
if attempt == max_retries - 1:
|
50 |
+
raise Exception("Request timed out after multiple attempts")
|
51 |
+
time.sleep(5)
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
if attempt == max_retries - 1:
|
55 |
+
raise e
|
56 |
+
time.sleep(5)
|
57 |
+
|
58 |
+
raise Exception("Failed to get response after all retries")
|
59 |
+
|
60 |
+
def extract_user_requested_limit(nl_query):
|
61 |
+
"""Extract user-requested number from natural language query"""
|
62 |
+
patterns = [
|
63 |
+
r'\b(\d+)\s+(?:ships?|vessels?|boats?|records?|results?|entries?|names?)\b',
|
64 |
+
r'(?:show|list|find|get)\s+(?:me\s+)?(?:the\s+)?(?:top\s+|first\s+)?(\d+)',
|
65 |
+
r'(?:names\s+of\s+)(\d+)\s+',
|
66 |
+
r'\b(\d+)\s+(?:oldest|newest|biggest|smallest|largest)',
|
67 |
+
]
|
68 |
+
|
69 |
+
for pattern in patterns:
|
70 |
+
match = re.search(pattern, nl_query, re.IGNORECASE)
|
71 |
+
if match:
|
72 |
+
return int(match.group(1))
|
73 |
+
return None
|
74 |
+
|
75 |
+
def clean_sql_output(sql_text, user_limit=None):
|
76 |
+
"""Clean and validate SQL output from the model"""
|
77 |
+
sql_text = sql_text.strip()
|
78 |
+
|
79 |
+
# Remove markdown formatting
|
80 |
+
if sql_text.startswith("```"):
|
81 |
+
lines = sql_text.split('\n')
|
82 |
+
sql_text = '\n'.join(lines[1:-1]) if len(lines) > 2 else sql_text
|
83 |
+
|
84 |
+
# Extract SQL
|
85 |
+
lines = sql_text.split('\n')
|
86 |
+
sql = ""
|
87 |
+
for line in lines:
|
88 |
+
line = line.strip()
|
89 |
+
if line and (line.upper().startswith('SELECT') or sql):
|
90 |
+
sql += line + " "
|
91 |
+
if line.endswith(';'):
|
92 |
+
break
|
93 |
+
|
94 |
+
sql = sql.strip().rstrip(';')
|
95 |
+
|
96 |
+
# Apply user-requested limit
|
97 |
+
if user_limit:
|
98 |
+
sql = re.sub(r'\s+LIMIT\s+\d+', '', sql, flags=re.IGNORECASE)
|
99 |
+
sql += f" LIMIT {user_limit}"
|
100 |
+
|
101 |
+
return sql
|
102 |
+
|
103 |
+
def text_to_sql(nl_query):
|
104 |
+
"""Convert natural language to SQL using Hugging Face Inference API"""
|
105 |
try:
|
106 |
+
schema = get_schema()
|
107 |
+
user_limit = extract_user_requested_limit(nl_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
prompt = f"""### Task
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
Generate a PostgreSQL query to answer this question: {nl_query}
|
111 |
|
112 |
### Database Schema
|
|
|
113 |
{schema}
|
114 |
|
115 |
### Instructions
|
116 |
+
- Return only the SQL query
|
117 |
+
- Use PostgreSQL syntax
|
118 |
+
- Be precise with table and column names
|
119 |
|
120 |
+
### SQL Query:"""
|
|
|
|
|
121 |
|
122 |
+
print("Querying Hugging Face Inference API...")
|
123 |
+
generated_sql = query_huggingface_api(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
if not generated_sql:
|
126 |
+
raise ValueError("No SQL generated from the model")
|
|
|
127 |
|
128 |
+
sql = clean_sql_output(generated_sql, user_limit)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
if not sql or not sql.upper().startswith('SELECT'):
|
131 |
+
raise ValueError(f"Invalid SQL generated: {sql}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
print(f"Generated SQL: {sql}")
|
|
|
|
|
134 |
results = execute_sql(sql)
|
|
|
135 |
return sql, results
|
136 |
|
137 |
except Exception as e:
|
138 |
+
error_msg = str(e)
|
139 |
+
print(f"Error in text_to_sql: {error_msg}")
|
140 |
+
return f"Error: {error_msg}", []
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
-
|
2 |
-
accelerate==0.34.2
|
3 |
psycopg2-binary==2.9.10
|
4 |
sqlalchemy==2.0.43
|
5 |
python-dotenv==1.1.1
|
6 |
-
|
7 |
-
streamlit==1.39.0
|
8 |
-
bitsandbytes==0.43.3
|
|
|
1 |
+
requests==2.31.0
|
|
|
2 |
psycopg2-binary==2.9.10
|
3 |
sqlalchemy==2.0.43
|
4 |
python-dotenv==1.1.1
|
5 |
+
streamlit==1.39.0
|
|
|
|