Spaces:
Running
Running
defog/sqlcoder-7b switch txt-2-SQL model
Browse files- Dockerfile +7 -3
- app.py +55 -9
- pipeline.py +116 -35
- requirements.txt +4 -4
Dockerfile
CHANGED
@@ -17,14 +17,18 @@ RUN pip install --no-cache-dir -r requirements.txt
|
|
17 |
|
18 |
COPY app.py pipeline.py db_utils.py ./
|
19 |
|
20 |
-
# Set up cache directory
|
21 |
RUN mkdir -p /tmp/cache/huggingface && \
|
22 |
chmod -R 777 /tmp/cache/huggingface
|
23 |
|
|
|
24 |
ENV HF_HOME=/tmp/cache/huggingface
|
|
|
|
|
25 |
ENV PORT=8501
|
26 |
-
ENV OMP_NUM_THREADS=
|
|
|
27 |
|
28 |
EXPOSE 8501
|
29 |
|
30 |
-
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
|
|
17 |
|
18 |
COPY app.py pipeline.py db_utils.py ./
|
19 |
|
20 |
+
# Set up cache directory with proper permissions
|
21 |
RUN mkdir -p /tmp/cache/huggingface && \
|
22 |
chmod -R 777 /tmp/cache/huggingface
|
23 |
|
24 |
+
# Environment variables
|
25 |
ENV HF_HOME=/tmp/cache/huggingface
|
26 |
+
ENV TRANSFORMERS_CACHE=/tmp/cache/huggingface
|
27 |
+
ENV HF_DATASETS_CACHE=/tmp/cache/huggingface
|
28 |
ENV PORT=8501
|
29 |
+
ENV OMP_NUM_THREADS=4
|
30 |
+
ENV TOKENIZERS_PARALLELISM=false
|
31 |
|
32 |
EXPOSE 8501
|
33 |
|
34 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
app.py
CHANGED
@@ -1,13 +1,59 @@
|
|
1 |
import streamlit as st
|
2 |
from pipeline import text_to_sql
|
3 |
|
4 |
-
st.title("
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
else:
|
13 |
-
st.
|
|
|
1 |
import streamlit as st
|
2 |
from pipeline import text_to_sql
|
3 |
|
4 |
+
st.title("SQLCoder Text-to-SQL App")
|
5 |
+
st.write("Powered by defog/sqlcoder-7b-2 🚀")
|
6 |
+
|
7 |
+
# Sample queries for user guidance
|
8 |
+
st.sidebar.header("Sample Queries")
|
9 |
+
sample_queries = [
|
10 |
+
"List 11 names of ships type schooner",
|
11 |
+
"Show me the 5 oldest ships",
|
12 |
+
"What are the different types of vessels?",
|
13 |
+
"Count the number of ships by type",
|
14 |
+
"Show ships built after 1900"
|
15 |
+
]
|
16 |
+
|
17 |
+
selected_sample = st.sidebar.selectbox("Choose a sample query:", [""] + sample_queries)
|
18 |
+
|
19 |
+
# Main input
|
20 |
+
nl_query = st.text_input(
|
21 |
+
"Enter your natural language query:",
|
22 |
+
value=selected_sample if selected_sample else "List 11 names of ships type schooner",
|
23 |
+
help="Ask questions about your database in plain English"
|
24 |
+
)
|
25 |
+
|
26 |
+
if st.button("🔄 Generate & Execute SQL"):
|
27 |
+
if nl_query.strip():
|
28 |
+
with st.spinner("Generating SQL and executing query..."):
|
29 |
+
try:
|
30 |
+
sql, results = text_to_sql(nl_query)
|
31 |
+
|
32 |
+
# Display results
|
33 |
+
st.success("Query executed successfully!")
|
34 |
+
|
35 |
+
# Show generated SQL
|
36 |
+
st.subheader("Generated SQL:")
|
37 |
+
st.code(sql, language="sql")
|
38 |
+
|
39 |
+
# Show results
|
40 |
+
st.subheader("Results:")
|
41 |
+
if results:
|
42 |
+
# Convert results to a more readable format
|
43 |
+
if isinstance(results[0], tuple):
|
44 |
+
# If results are tuples, display as table
|
45 |
+
st.write(f"Found {len(results)} rows:")
|
46 |
+
for i, row in enumerate(results[:50]): # Show first 50 rows
|
47 |
+
st.write(f"Row {i+1}: {row}")
|
48 |
+
if len(results) > 50:
|
49 |
+
st.info(f"Showing first 50 rows out of {len(results)} total results.")
|
50 |
+
else:
|
51 |
+
st.write(results)
|
52 |
+
else:
|
53 |
+
st.info("Query executed successfully but returned no results.")
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
st.error(f"Error: {str(e)}")
|
57 |
+
st.write("Please try rephrasing your query or check if the requested data exists in the database.")
|
58 |
else:
|
59 |
+
st.warning("Please enter a query to proceed.")
|
pipeline.py
CHANGED
@@ -1,51 +1,132 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
from
|
4 |
from db_utils import get_schema, execute_sql
|
5 |
|
6 |
-
# Initialize model
|
7 |
model = None
|
8 |
tokenizer = None
|
9 |
-
try:
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
-
"Snowflake/Arctic-Text2SQL-R1-7B",
|
12 |
-
cache_dir="/tmp/cache/huggingface",
|
13 |
-
trust_remote_code=True
|
14 |
-
)
|
15 |
-
model = LLM(
|
16 |
-
model="Snowflake/Arctic-Text2SQL-R1-7B",
|
17 |
-
dtype="float16",
|
18 |
-
gpu_memory_utilization=0.75,
|
19 |
-
max_model_len=1024,
|
20 |
-
max_num_seqs=1,
|
21 |
-
enforce_eager=True,
|
22 |
-
trust_remote_code=True
|
23 |
-
)
|
24 |
-
except Exception as e:
|
25 |
-
print(f"Error loading model at startup: {e}")
|
26 |
-
raise
|
27 |
|
28 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
try:
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
### Database Schema
|
|
|
35 |
{schema}
|
36 |
|
37 |
-
###
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
"""
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
results = execute_sql(sql)
|
|
|
48 |
return sql, results
|
|
|
49 |
except Exception as e:
|
50 |
print(f"Error in text_to_sql: {e}")
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
from db_utils import get_schema, execute_sql
|
5 |
|
6 |
+
# Initialize model and tokenizer as global variables
|
7 |
model = None
|
8 |
tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def load_model():
|
11 |
+
"""Load SQLCoder model with quantization for memory efficiency"""
|
12 |
+
global model, tokenizer
|
13 |
+
|
14 |
+
if model is not None and tokenizer is not None:
|
15 |
+
return model, tokenizer
|
16 |
+
|
17 |
try:
|
18 |
+
# Configure quantization to reduce memory usage
|
19 |
+
quantization_config = BitsAndBytesConfig(
|
20 |
+
load_in_4bit=True,
|
21 |
+
bnb_4bit_compute_dtype=torch.float16,
|
22 |
+
bnb_4bit_use_double_quant=True,
|
23 |
+
bnb_4bit_quant_type="nf4"
|
24 |
+
)
|
25 |
+
|
26 |
+
# Load tokenizer
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
+
"defog/sqlcoder-7b-2",
|
29 |
+
trust_remote_code=True,
|
30 |
+
cache_dir="/tmp/cache/huggingface"
|
31 |
+
)
|
32 |
+
|
33 |
+
# Load model with quantization
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(
|
35 |
+
"defog/sqlcoder-7b-2",
|
36 |
+
quantization_config=quantization_config,
|
37 |
+
device_map="auto",
|
38 |
+
trust_remote_code=True,
|
39 |
+
torch_dtype=torch.float16,
|
40 |
+
cache_dir="/tmp/cache/huggingface"
|
41 |
+
)
|
42 |
+
|
43 |
+
print("SQLCoder model loaded successfully!")
|
44 |
+
return model, tokenizer
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error loading SQLCoder model: {e}")
|
48 |
+
raise e
|
49 |
+
|
50 |
+
def generate_sql(nl_query, schema):
|
51 |
+
"""Generate SQL using SQLCoder with proper prompting"""
|
52 |
+
prompt = f"""### Task
|
53 |
+
Generate a PostgreSQL query to answer this question: {nl_query}
|
54 |
|
55 |
### Database Schema
|
56 |
+
The query will run on a database with the following schema:
|
57 |
{schema}
|
58 |
|
59 |
+
### Instructions
|
60 |
+
- Return only the SQL query, no explanation
|
61 |
+
- Use proper PostgreSQL syntax
|
62 |
+
- Include appropriate LIMIT clauses if the question asks for a specific number of results
|
63 |
+
|
64 |
+
### SQL Query:
|
65 |
"""
|
66 |
+
return prompt
|
67 |
+
|
68 |
+
def text_to_sql(nl_query):
|
69 |
+
"""Main function to convert natural language to SQL and execute it"""
|
70 |
+
try:
|
71 |
+
# Load model if not already loaded
|
72 |
+
model, tokenizer = load_model()
|
73 |
+
|
74 |
+
# Get database schema
|
75 |
+
schema = get_schema()
|
76 |
+
|
77 |
+
# Create the prompt
|
78 |
+
prompt = generate_sql(nl_query, schema)
|
79 |
+
|
80 |
+
# Tokenize input
|
81 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
82 |
+
|
83 |
+
# Move to appropriate device
|
84 |
+
device = next(model.parameters()).device
|
85 |
+
inputs = inputs.to(device)
|
86 |
+
|
87 |
+
# Generate SQL
|
88 |
+
with torch.no_grad():
|
89 |
+
outputs = model.generate(
|
90 |
+
inputs,
|
91 |
+
max_new_tokens=200,
|
92 |
+
num_beams=4,
|
93 |
+
temperature=0.1,
|
94 |
+
do_sample=False,
|
95 |
+
pad_token_id=tokenizer.eos_token_id,
|
96 |
+
eos_token_id=tokenizer.eos_token_id
|
97 |
+
)
|
98 |
+
|
99 |
+
# Decode the output
|
100 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
+
|
102 |
+
# Extract just the SQL part (after the prompt)
|
103 |
+
sql_start = generated_text.find("### SQL Query:") + len("### SQL Query:")
|
104 |
+
sql = generated_text[sql_start:].strip()
|
105 |
+
|
106 |
+
# Clean up the SQL (remove any extra text after the query)
|
107 |
+
sql_lines = sql.split('\n')
|
108 |
+
sql = sql_lines[0].strip() if sql_lines else sql.strip()
|
109 |
+
|
110 |
+
# Remove any trailing semicolon if present and clean
|
111 |
+
sql = sql.rstrip(';').strip()
|
112 |
+
|
113 |
+
# Basic validation
|
114 |
+
if not sql or not sql.lower().startswith('select'):
|
115 |
+
raise ValueError(f"Generated invalid SQL: {sql}")
|
116 |
+
|
117 |
+
print(f"Generated SQL: {sql}")
|
118 |
+
|
119 |
+
# Execute the SQL
|
120 |
results = execute_sql(sql)
|
121 |
+
|
122 |
return sql, results
|
123 |
+
|
124 |
except Exception as e:
|
125 |
print(f"Error in text_to_sql: {e}")
|
126 |
+
return f"Error: {str(e)}", []
|
127 |
+
|
128 |
+
# Initialize model on import (optional - can be lazy loaded)
|
129 |
+
try:
|
130 |
+
load_model()
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Model will be loaded on first use due to: {e}")
|
requirements.txt
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
transformers==4.
|
2 |
-
accelerate==
|
3 |
psycopg2-binary==2.9.10
|
4 |
sqlalchemy==2.0.43
|
5 |
python-dotenv==1.1.1
|
6 |
-
|
7 |
streamlit==1.39.0
|
8 |
-
|
|
|
1 |
+
transformers==4.45.2
|
2 |
+
accelerate==0.34.2
|
3 |
psycopg2-binary==2.9.10
|
4 |
sqlalchemy==2.0.43
|
5 |
python-dotenv==1.1.1
|
6 |
+
torch==2.4.1
|
7 |
streamlit==1.39.0
|
8 |
+
bitsandbytes==0.43.3
|