Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
@@ -12,15 +12,9 @@ from spann3r.datasets import Demo
|
|
12 |
from torch.utils.data import DataLoader
|
13 |
import trimesh
|
14 |
from scipy.spatial.transform import Rotation
|
15 |
-
from transformers import AutoModelForImageSegmentation
|
16 |
-
from torchvision import transforms
|
17 |
-
from PIL import Image
|
18 |
-
import open3d as o3d
|
19 |
-
from backend_utils import improved_multiway_registration, pts2normal, point2mesh, combine_and_clean_point_clouds
|
20 |
-
|
21 |
|
22 |
# Default values
|
23 |
-
DEFAULT_CKPT_PATH = '
|
24 |
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
|
25 |
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
26 |
|
@@ -29,45 +23,15 @@ OPENGL = np.array([[1, 0, 0, 0],
|
|
29 |
[0, 0, -1, 0],
|
30 |
[0, 0, 0, 1]])
|
31 |
|
32 |
-
def
|
33 |
-
if as_pointcloud:
|
34 |
-
if not isinstance(geometry, o3d.geometry.PointCloud):
|
35 |
-
raise ValueError("Expected an Open3D PointCloud object when as_pointcloud is True")
|
36 |
-
output_path = tempfile.mktemp(suffix='.ply')
|
37 |
-
else:
|
38 |
-
if not isinstance(geometry, o3d.geometry.TriangleMesh):
|
39 |
-
raise ValueError("Expected an Open3D TriangleMesh object when as_pointcloud is False")
|
40 |
-
output_path = tempfile.mktemp(suffix='.obj')
|
41 |
-
|
42 |
-
# Apply rotation
|
43 |
-
rot = np.eye(4)
|
44 |
-
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
|
45 |
-
transform = np.linalg.inv(OPENGL @ rot)
|
46 |
-
geometry.transform(transform)
|
47 |
-
|
48 |
-
# Export the geometry
|
49 |
-
if as_pointcloud:
|
50 |
-
o3d.io.write_point_cloud(output_path, geometry, write_ascii=False, compressed=True)
|
51 |
-
else:
|
52 |
-
o3d.io.write_triangle_mesh(output_path, geometry, write_ascii=False, compressed=True)
|
53 |
-
|
54 |
-
return output_path
|
55 |
-
|
56 |
-
|
57 |
-
def extract_frames(video_path: str, duration: float = 20.0, fps: float = 3.0) -> str:
|
58 |
temp_dir = tempfile.mkdtemp()
|
59 |
output_path = os.path.join(temp_dir, "%03d.jpg")
|
60 |
-
|
61 |
-
filter_complex = f"select='if(lt(t,{duration}),1,0)',fps={fps}"
|
62 |
-
|
63 |
command = [
|
64 |
"ffmpeg",
|
65 |
"-i", video_path,
|
66 |
-
"-vf",
|
67 |
-
"-vsync", "0",
|
68 |
output_path
|
69 |
]
|
70 |
-
|
71 |
subprocess.run(command, check=True)
|
72 |
return temp_dir
|
73 |
|
@@ -141,42 +105,9 @@ def pts3d_to_trimesh(img, pts3d, valid=None):
|
|
141 |
return dict(vertices=vertices, face_colors=face_colors, faces=faces)
|
142 |
|
143 |
model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
|
144 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
|
145 |
-
birefnet.to(DEFAULT_DEVICE)
|
146 |
-
birefnet.eval()
|
147 |
|
148 |
-
def extract_object(birefnet, image):
|
149 |
-
# Data settings
|
150 |
-
image_size = (1024, 1024)
|
151 |
-
transform_image = transforms.Compose([
|
152 |
-
transforms.Resize(image_size),
|
153 |
-
transforms.ToTensor(),
|
154 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
155 |
-
])
|
156 |
-
|
157 |
-
input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE)
|
158 |
-
|
159 |
-
# Prediction
|
160 |
-
with torch.no_grad():
|
161 |
-
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
162 |
-
pred = preds[0].squeeze()
|
163 |
-
pred_pil = transforms.ToPILImage()(pred)
|
164 |
-
mask = pred_pil.resize(image.size)
|
165 |
-
return mask
|
166 |
-
|
167 |
-
def generate_mask(image: np.ndarray):
|
168 |
-
# Convert numpy array to PIL Image
|
169 |
-
pil_image = Image.fromarray((image * 255).astype(np.uint8))
|
170 |
-
|
171 |
-
# Extract object and get mask
|
172 |
-
mask = extract_object(birefnet, pil_image)
|
173 |
-
|
174 |
-
# Convert mask to numpy array
|
175 |
-
mask_np = np.array(mask) / 255.0
|
176 |
-
return mask_np
|
177 |
@torch.no_grad()
|
178 |
-
def reconstruct(video_path, conf_thresh, kf_every,
|
179 |
-
as_pointcloud=False, remove_background=False, refine=False):
|
180 |
# Extract frames from video
|
181 |
demo_path = extract_frames(video_path)
|
182 |
|
@@ -197,156 +128,67 @@ def reconstruct(video_path, conf_thresh, kf_every,
|
|
197 |
fps = len(batch) / (end - start)
|
198 |
print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
pcd.points = o3d.utility.Vector3dVector(pts[combined_mask])
|
219 |
-
pcd.colors = o3d.utility.Vector3dVector(image[combined_mask])
|
220 |
-
pcd.normals = o3d.utility.Vector3dVector(pts_normal[combined_mask])
|
221 |
-
pcds.append(pcd)
|
222 |
-
except Exception as e:
|
223 |
-
print(repr(e))
|
224 |
-
|
225 |
-
print(f'Finished Process results {demo_name}')
|
226 |
|
227 |
-
|
228 |
|
229 |
if as_pointcloud:
|
230 |
-
|
|
|
|
|
|
|
|
|
231 |
else:
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
coarse_output_path = export_geometry(o3d_geometry, as_pointcloud)
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
if refine:
|
245 |
-
# Perform global optimization
|
246 |
-
print("Performing global registration...")
|
247 |
-
transformed_pcds, _, _ = improved_multiway_registration(pcds, voxel_size=0.001)
|
248 |
-
|
249 |
-
if as_pointcloud:
|
250 |
-
o3d_geometry = transformed_pcds
|
251 |
-
else:
|
252 |
-
o3d_geometry = point2mesh(transformed_pcds)
|
253 |
-
|
254 |
-
# Create coarse result
|
255 |
-
refined_output_path = export_geometry(o3d_geometry, as_pointcloud)
|
256 |
-
|
257 |
-
print(f'Perform global optimization {demo_name}')
|
258 |
-
|
259 |
-
yield coarse_output_path, refined_output_path
|
260 |
-
|
261 |
# Clean up temporary directory
|
262 |
os.system(f"rm -rf {demo_path}")
|
263 |
-
|
264 |
-
# Update the Gradio interface with improved layout
|
265 |
-
with gr.Blocks(
|
266 |
-
title="StableSpann3r: Making Spann3r stable with Odometry Backend",
|
267 |
-
css="""
|
268 |
-
#download {
|
269 |
-
height: 118px;
|
270 |
-
}
|
271 |
-
.slider .inner {
|
272 |
-
width: 5px;
|
273 |
-
background: #FFF;
|
274 |
-
}
|
275 |
-
.viewport {
|
276 |
-
aspect-ratio: 4/3;
|
277 |
-
}
|
278 |
-
.tabs button.selected {
|
279 |
-
font-size: 20px !important;
|
280 |
-
color: crimson !important;
|
281 |
-
}
|
282 |
-
h1 {
|
283 |
-
text-align: center;
|
284 |
-
display: block;
|
285 |
-
}
|
286 |
-
h2 {
|
287 |
-
text-align: center;
|
288 |
-
display: block;
|
289 |
-
}
|
290 |
-
h3 {
|
291 |
-
text-align: center;
|
292 |
-
display: block;
|
293 |
-
}
|
294 |
-
.md_feedback li {
|
295 |
-
margin-bottom: 0px !important;
|
296 |
-
}
|
297 |
-
""",
|
298 |
-
head="""
|
299 |
-
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
300 |
-
<script>
|
301 |
-
window.dataLayer = window.dataLayer || [];
|
302 |
-
function gtag() {dataLayer.push(arguments);}
|
303 |
-
gtag('js', new Date());
|
304 |
-
gtag('config', 'G-1FWSVCGZTG');
|
305 |
-
</script>
|
306 |
-
""",
|
307 |
-
) as iface:
|
308 |
-
gr.Markdown(
|
309 |
-
"""
|
310 |
-
# StableSpann3r: Making Spann3r stable with Odometry Backend
|
311 |
-
<p align="center">
|
312 |
-
<a title="Website" href="https://stable-x.github.io/StableSpann3r/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
313 |
-
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
314 |
-
</a>
|
315 |
-
<a title="arXiv" href="https://arxiv.org/abs/XXXX.XXXXX" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
316 |
-
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
317 |
-
</a>
|
318 |
-
<a title="Github" href="https://github.com/Stable-X/StableSpann3r" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
319 |
-
<img src="https://img.shields.io/github/stars/Stable-X/StableSpann3r?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
|
320 |
-
</a>
|
321 |
-
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
322 |
-
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
323 |
-
</a>
|
324 |
-
</p>
|
325 |
-
"""
|
326 |
-
)
|
327 |
-
with gr.Row():
|
328 |
-
with gr.Column(scale=1):
|
329 |
-
video_input = gr.Video(label="Input Video")
|
330 |
-
with gr.Row():
|
331 |
-
conf_thresh = gr.Slider(0, 1, value=1e-3, label="Confidence Threshold")
|
332 |
-
kf_every = gr.Slider(1, 30, step=1, value=1, label="Keyframe Interval")
|
333 |
-
with gr.Row():
|
334 |
-
remove_background = gr.Checkbox(label="Remove Background", value=False)
|
335 |
-
refine = gr.Checkbox(label="Enable Backend", value=False)
|
336 |
-
as_pointcloud = gr.Checkbox(label="As Pointcloud", value=False)
|
337 |
-
reconstruct_btn = gr.Button("Reconstruct")
|
338 |
-
|
339 |
-
with gr.Column(scale=2):
|
340 |
-
with gr.Tab("Coarse Model"):
|
341 |
-
coarse_model = gr.Model3D(label="Coarse 3D Model", display_mode="solid", clear_color=[0.0, 0.0, 0.0, 0.0])
|
342 |
-
with gr.Tab("Refined Model"):
|
343 |
-
refined_model = gr.Model3D(label="Refined 3D Model", display_mode="solid", clear_color=[0.0, 0.0, 0.0, 0.0])
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
if __name__ == "__main__":
|
352 |
-
iface.launch(
|
|
|
12 |
from torch.utils.data import DataLoader
|
13 |
import trimesh
|
14 |
from scipy.spatial.transform import Rotation
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Default values
|
17 |
+
DEFAULT_CKPT_PATH = 'https://huggingface.co/spaces/Stable-X/StableSpann3R/resolve/main/checkpoints/spann3r.pth'
|
18 |
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
|
19 |
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
20 |
|
|
|
23 |
[0, 0, -1, 0],
|
24 |
[0, 0, 0, 1]])
|
25 |
|
26 |
+
def extract_frames(video_path: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
temp_dir = tempfile.mkdtemp()
|
28 |
output_path = os.path.join(temp_dir, "%03d.jpg")
|
|
|
|
|
|
|
29 |
command = [
|
30 |
"ffmpeg",
|
31 |
"-i", video_path,
|
32 |
+
"-vf", "fps=1",
|
|
|
33 |
output_path
|
34 |
]
|
|
|
35 |
subprocess.run(command, check=True)
|
36 |
return temp_dir
|
37 |
|
|
|
105 |
return dict(vertices=vertices, face_colors=face_colors, faces=faces)
|
106 |
|
107 |
model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
|
|
|
|
|
|
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
@torch.no_grad()
|
110 |
+
def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False):
|
|
|
111 |
# Extract frames from video
|
112 |
demo_path = extract_frames(video_path)
|
113 |
|
|
|
128 |
fps = len(batch) / (end - start)
|
129 |
print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
|
130 |
|
131 |
+
# Process results
|
132 |
+
pts_all, images_all, conf_all = [], [], []
|
133 |
+
for j, view in enumerate(batch):
|
134 |
+
image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
|
135 |
+
pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
|
136 |
+
conf = preds[j]['conf'][0].cpu().data.numpy()
|
137 |
+
|
138 |
+
images_all.append((image[None, ...] + 1.0)/2.0)
|
139 |
+
pts_all.append(pts[None, ...])
|
140 |
+
conf_all.append(conf[None, ...])
|
141 |
+
|
142 |
+
images_all = np.concatenate(images_all, axis=0)
|
143 |
+
pts_all = np.concatenate(pts_all, axis=0) * 10
|
144 |
+
conf_all = np.concatenate(conf_all, axis=0)
|
145 |
+
|
146 |
+
# Create point cloud or mesh
|
147 |
+
conf_sig_all = (conf_all-1) / conf_all
|
148 |
+
mask = conf_sig_all > conf_thresh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
scene = trimesh.Scene()
|
151 |
|
152 |
if as_pointcloud:
|
153 |
+
pcd = trimesh.PointCloud(
|
154 |
+
vertices=pts_all[mask].reshape(-1, 3),
|
155 |
+
colors=images_all[mask].reshape(-1, 3)
|
156 |
+
)
|
157 |
+
scene.add_geometry(pcd)
|
158 |
else:
|
159 |
+
meshes = []
|
160 |
+
for i in range(len(images_all)):
|
161 |
+
meshes.append(pts3d_to_trimesh(images_all[i], pts_all[i], mask[i]))
|
162 |
+
mesh = trimesh.Trimesh(**cat_meshes(meshes))
|
163 |
+
scene.add_geometry(mesh)
|
|
|
|
|
164 |
|
165 |
+
rot = np.eye(4)
|
166 |
+
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
|
167 |
+
scene.apply_transform(np.linalg.inv(OPENGL @ rot))
|
168 |
+
|
169 |
+
# Save the scene as GLB
|
170 |
+
output_path = tempfile.mktemp(suffix='.glb')
|
171 |
+
scene.export(output_path)
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
# Clean up temporary directory
|
174 |
os.system(f"rm -rf {demo_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
return output_path, f"Reconstruction completed. FPS: {fps:.2f}"
|
177 |
+
|
178 |
+
iface = gr.Interface(
|
179 |
+
fn=reconstruct,
|
180 |
+
inputs=[
|
181 |
+
gr.Video(label="Input Video"),
|
182 |
+
gr.Slider(0, 1, value=1e-3, label="Confidence Threshold"),
|
183 |
+
gr.Slider(1, 30, step=1, value=5, label="Keyframe Interval"),
|
184 |
+
gr.Checkbox(label="As Pointcloud", value=False)
|
185 |
+
],
|
186 |
+
outputs=[
|
187 |
+
gr.Model3D(label="3D Model (GLB)", display_mode="solid"),
|
188 |
+
gr.Textbox(label="Status")
|
189 |
+
],
|
190 |
+
title="3D Reconstruction with Spatial Memory",
|
191 |
+
)
|
192 |
|
193 |
if __name__ == "__main__":
|
194 |
+
iface.launch()
|