Spaces:
Sleeping
Sleeping
| import torch | |
| from torch.utils.data import DataLoader | |
| from loguru import logger | |
| from train.trainer_step import TrainStepper | |
| from train.base_trainer import evaluator | |
| from data.base_dataset import BaseDataset | |
| from models.deco import DECO | |
| from utils.config import parse_args, run_grid_search_experiments | |
| def test(hparams): | |
| deco_model = DECO(hparams.TRAINING.ENCODER, hparams.TRAINING.CONTEXT, device) | |
| pytorch_total_params = sum(p.numel() for p in deco_model.parameters() if p.requires_grad) | |
| print('Total number of trainable parameters: ', pytorch_total_params) | |
| solver = TrainStepper(deco_model, hparams.TRAINING.CONTEXT, hparams.OPTIMIZER.LR, hparams.TRAINING.LOSS_WEIGHTS, hparams.TRAINING.PAL_LOSS_WEIGHTS, device) | |
| logger.info(f'Loading weights from {hparams.TRAINING.BEST_MODEL_PATH}') | |
| _, _ = solver.load(hparams.TRAINING.BEST_MODEL_PATH) | |
| # Run testing | |
| for test_loader in val_loaders: | |
| dataset_name = test_loader.dataset.dataset | |
| test_dict, total_time = evaluator(test_loader, solver, hparams, 0, dataset_name, return_dict=True) | |
| print('Test Contact Precision: ', test_dict['cont_precision']) | |
| print('Test Contact Recall: ', test_dict['cont_recall']) | |
| print('Test Contact F1 Score: ', test_dict['cont_f1']) | |
| print('Test Contact FP Geo. Error: ', test_dict['fp_geo_err']) | |
| print('Test Contact FN Geo. Error: ', test_dict['fn_geo_err']) | |
| if hparams.TRAINING.CONTEXT: | |
| print('Test Contact Semantic Segmentation IoU: ', test_dict['sem_iou']) | |
| print('Test Contact Part Segmentation IoU: ', test_dict['part_iou']) | |
| print('\nTime taken per image for evaluation: ', total_time) | |
| print('-'*50) | |
| if __name__ == '__main__': | |
| args = parse_args() | |
| hparams = run_grid_search_experiments( | |
| args, | |
| script='tester.py', | |
| change_wt_name=False | |
| ) | |
| if torch.cuda.is_available(): | |
| device = torch.device('cuda') | |
| else: | |
| device = torch.device('cpu') | |
| val_datasets = [] | |
| for ds in hparams.VALIDATION.DATASETS: | |
| if ds in ['rich', 'prox']: | |
| val_datasets.append(BaseDataset(ds, 'val', model_type='smplx', normalize=hparams.DATASET.NORMALIZE_IMAGES)) | |
| elif ds in ['damon']: | |
| val_datasets.append(BaseDataset(ds, 'val', model_type='smpl', normalize=hparams.DATASET.NORMALIZE_IMAGES)) | |
| else: | |
| raise ValueError('Dataset not supported') | |
| val_loaders = [DataLoader(val_dataset, batch_size=hparams.DATASET.BATCH_SIZE, shuffle=False, num_workers=hparams.DATASET.NUM_WORKERS) for val_dataset in val_datasets] | |
| test(hparams) |