File size: 50,165 Bytes
eb57aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 |
from re import sub
from unidecode import unidecode
import copy
import os
from .tokenizer import Tokenizer
from .data_helper import DataHelper
from .token_merger import ClassifierChunkParser
import pickle
import re
class Normalizer:
def __init__(self,
half_space_char='\u200c',
statistical_space_correction=False,
date_normalizing_needed=True,
time_normalizing_needed=True,
pinglish_conversion_needed=False,
number2text_needed=True,
half_space_corrector=True,
train_file_path="resource/tokenizer/Bijan_khan_chunk.txt",
token_merger_path="resource/tokenizer/TokenMerger.pckl"):
self.time_normalizing_needed = time_normalizing_needed
self.dir_path = os.path.dirname(os.path.realpath(__file__)) + "/"
self.dic1_path = self.dir_path + 'resource/normalizer/Dic1_new.txt'
self.dic2_path = self.dir_path + 'resource/normalizer/Dic2_new.txt'
self.dic3_path = self.dir_path + 'resource/normalizer/Dic3_new.txt'
self.dic1 = self.load_dictionary(self.dic1_path)
self.dic2 = self.load_dictionary(self.dic2_path)
self.dic3 = self.load_dictionary(self.dic3_path)
self.tokenizer = Tokenizer()
self.dictaition_normalizer = DictatioinNormalizer()
self.statistical_space_correction = statistical_space_correction
self.date_normalizing_needed = date_normalizing_needed
self.pinglish_conversion_needed = pinglish_conversion_needed
self.number2text_needed = number2text_needed
self.half_space_corrector = half_space_corrector
self.data_helper = DataHelper()
self.token_merger = ClassifierChunkParser()
if self.date_normalizing_needed or self.pinglish_conversion_needed:
self.date_normalizer = DateNormalizer()
self.pinglish_conversion = PinglishNormalizer()
if self.time_normalizing_needed:
self.time_normalizer = TimeNormalizer()
if self.statistical_space_correction:
self.token_merger_path = self.dir_path + token_merger_path
self.train_file_path = train_file_path
self.half_space_char = half_space_char
if os.path.isfile(self.token_merger_path):
self.token_merger_model = self.data_helper.load_var(self.token_merger_path)
elif os.path.isfile(self.train_file_path):
self.token_merger_model = self.token_merger.train_merger(self.train_file_path, test_split=0)
self.data_helper.save_var(self.token_merger_path, self.token_merger_model)
def load_dictionary(self, file_path):
dictionary = {}
with open(file_path, 'r', encoding='utf-8') as f:
g = f.readlines()
for Wrds in g:
wrd = Wrds.split(' ')
dictionary[wrd[0].strip()] = sub('\n', '', wrd[1].strip())
return dictionary
def replace_abbrv(self, text):
text = text.replace("( ص )", "( صلياللهعليهوآله )")
text = text.replace("( ع )", "( عليهالسلام )")
text = text.replace("( س )", "( سلامالله )")
text = text.replace("( ره )", "( رحمهاللهعليه )")
text = text.replace("( قده )", "( قدسسره )")
text = text.replace("( رض )", "( رضياللهعنه )")
text = text.replace(" ج ا ا ", " جمهوري اسلامي ايران ")
text = text.replace(" ج اا ", " جمهوري اسلامي ايران ")
text = text.replace(" جاا ", " جمهوري اسلامي ايران ")
text = text.replace(" ج ا ايران ", " جمهوري اسلامي ايران ")
text = text.replace(" ج اايران ", " جمهوري اسلامي ايران ")
text = text.replace(" جاايران ", " جمهوري اسلامي ايران ")
text = text.replace(" صص ", " صفحات ")
text = text.replace(" ه ق ", " هجري قمري ")
text = text.replace(" ه ش ", " هجري شمسي ")
text = text.replace(" ق م ", " قبل از ميلاد ")
text = text.replace(" صص ", " صفحات ")
text = text.replace(" الخ ", " اليآخر ")
return text
def replace_special_symbols(self, doc_string):
special_dict = {
"﷼": " ریال ",
"ﷴ": " محمد ",
"ﷺ": " صلياللهعليهوآلهوسلم ",
"ﷲ": " الله ",
"ﷻ": " جَل جلاله ",
"ﷱ": " قلي ",
"ﷳ": " صلي ",
"ﷰ": " اكبر ",
"ﷵ": " صلياللهعليهوآلهوسلم ",
"ﷶ": " رسول ",
"ﷷ": " عليهالسلام ",
"ﷸ": " و سلم ",
"﷽": " بسماللهالرحمنالرحيم ",
}
result = doc_string
for i, j in special_dict.items():
result = sub(i, j, result)
return result
def sub_alphabets(self, doc_string):
# try:
# doc_string = doc_string.decode('utf-8')
# except UnicodeEncodeError:
# pass
a0 = "ء"
b0 = "ئ"
c0 = sub(a0, b0, doc_string)
a1 = r"ٲ|ٱ|إ|ﺍ|أ"
a11 = r"ﺁ|آ"
b1 = r"ا"
b11 = r"آ"
c11 = sub(a11, b11, c0)
c1 = sub(a1, b1, c11)
a2 = r"ﺐ|ﺏ|ﺑ"
b2 = r"ب"
c2 = sub(a2, b2, c1)
a3 = r"ﭖ|ﭗ|ﭙ|ﺒ|ﭘ"
b3 = r"پ"
c3 = sub(a3, b3, c2)
a4 = r"ﭡ|ٺ|ٹ|ﭞ|ٿ|ټ|ﺕ|ﺗ|ﺖ|ﺘ"
b4 = r"ت"
c4 = sub(a4, b4, c3)
a5 = r"ﺙ|ﺛ"
b5 = r"ث"
c5 = sub(a5, b5, c4)
a6 = r"ﺝ|ڃ|ﺠ|ﺟ"
b6 = r"ج"
c6 = sub(a6, b6, c5)
a7 = r"ڃ|ﭽ|ﭼ"
b7 = r"چ"
c7 = sub(a7, b7, c6)
a8 = r"ﺢ|ﺤ|څ|ځ|ﺣ"
b8 = r"ح"
c8 = sub(a8, b8, c7)
a9 = r"ﺥ|ﺦ|ﺨ|ﺧ"
b9 = r"خ"
c9 = sub(a9, b9, c8)
a10 = r"ڏ|ډ|ﺪ|ﺩ"
b10 = r"د"
c10 = sub(a10, b10, c9)
a11 = r"ﺫ|ﺬ|ﻧ"
b11 = r"ذ"
c11 = sub(a11, b11, c10)
a12 = r"ڙ|ڗ|ڒ|ڑ|ڕ|ﺭ|ﺮ"
b12 = r"ر"
c12 = sub(a12, b12, c11)
a13 = r"ﺰ|ﺯ"
b13 = r"ز"
c13 = sub(a13, b13, c12)
a14 = r"ﮊ"
b14 = r"ژ"
c14 = sub(a14, b14, c13)
a15 = r"ݭ|ݜ|ﺱ|ﺲ|ښ|ﺴ|ﺳ"
b15 = r"س"
c15 = sub(a15, b15, c14)
a16 = r"ﺵ|ﺶ|ﺸ|ﺷ"
b16 = r"ش"
c16 = sub(a16, b16, c15)
a17 = r"ﺺ|ﺼ|ﺻ"
b17 = r"ص"
c17 = sub(a17, b17, c16)
a18 = r"ﺽ|ﺾ|ﺿ|ﻀ"
b18 = r"ض"
c18 = sub(a18, b18, c17)
a19 = r"ﻁ|ﻂ|ﻃ|ﻄ"
b19 = r"ط"
c19 = sub(a19, b19, c18)
a20 = r"ﻆ|ﻇ|ﻈ"
b20 = r"ظ"
c20 = sub(a20, b20, c19)
a21 = r"ڠ|ﻉ|ﻊ|ﻋ"
b21 = r"ع"
c21 = sub(a21, b21, c20)
a22 = r"ﻎ|ۼ|ﻍ|ﻐ|ﻏ"
b22 = r"غ"
c22 = sub(a22, b22, c21)
a23 = r"ﻒ|ﻑ|ﻔ|ﻓ"
b23 = r"ف"
c23 = sub(a23, b23, c22)
a24 = r"ﻕ|ڤ|ﻖ|ﻗ"
b24 = r"ق"
c24 = sub(a24, b24, c23)
a25 = r"ڭ|ﻚ|ﮎ|ﻜ|ﮏ|ګ|ﻛ|ﮑ|ﮐ|ڪ|ک"
b25 = r"ك"
c25 = sub(a25, b25, c24)
a26 = r"ﮚ|ﮒ|ﮓ|ﮕ|ﮔ"
b26 = r"گ"
c26 = sub(a26, b26, c25)
a27 = r"ﻝ|ﻞ|ﻠ|ڵ"
b27 = r"ل"
c27 = sub(a27, b27, c26)
a28 = r"ﻡ|ﻤ|ﻢ|ﻣ"
b28 = r"م"
c28 = sub(a28, b28, c27)
a29 = r"ڼ|ﻦ|ﻥ|ﻨ"
b29 = r"ن"
c29 = sub(a29, b29, c28)
a30 = r"ވ|ﯙ|ۈ|ۋ|ﺆ|ۊ|ۇ|ۏ|ۅ|ۉ|ﻭ|ﻮ|ؤ"
b30 = r"و"
c30 = sub(a30, b30, c29)
a31 = r"ﺔ|ﻬ|ھ|ﻩ|ﻫ|ﻪ|ۀ|ە|ة|ہ|\u06C1"
b31 = r"ه"
c31 = sub(a31, b31, c30)
a32 = r"ﭛ|ﻯ|ۍ|ﻰ|ﻱ|ﻲ|ں|ﻳ|ﻴ|ﯼ|ې|ﯽ|ﯾ|ﯿ|ێ|ے|ى|ی"
b32 = r"ي"
c32 = sub(a32, b32, c31)
a33 = r'¬'
b33 = r''
c33 = sub(a33, b33, c32)
pa0 = r'•|·|●|·|・|∙|。|ⴰ'
pb0 = r'.'
pc0 = sub(pa0, pb0, c33)
pa1 = r',|٬|‚|,'
pb1 = r'،'
pc1 = sub(pa1, pb1, pc0)
pa2 = r'ʕ'
pb2 = r'؟'
pc2 = sub(pa2, pb2, pc1)
pa3 = r'٪'
pb3 = r'%'
pc3 = sub(pa3, pb3, pc2)
na0 = r'۰|٠'
nb0 = r'0'
nc0 = sub(na0, nb0, pc3)
na1 = r'۱|١'
nb1 = r'1'
nc1 = sub(na1, nb1, nc0)
na2 = r'۲|٢'
nb2 = r'2'
nc2 = sub(na2, nb2, nc1)
na3 = r'۳|٣'
nb3 = r'3'
nc3 = sub(na3, nb3, nc2)
na4 = r'۴|٤'
nb4 = r'4'
nc4 = sub(na4, nb4, nc3)
na5 = r'۵'
nb5 = r'5'
nc5 = sub(na5, nb5, nc4)
na6 = r'۶|٦'
nb6 = r'6'
nc6 = sub(na6, nb6, nc5)
na7 = r'۷|٧'
nb7 = r'7'
nc7 = sub(na7, nb7, nc6)
na8 = r'۸|٨'
nb8 = r'8'
nc8 = sub(na8, nb8, nc7)
na9 = r'۹|٩'
nb9 = r'9'
nc9 = sub(na9, nb9, nc8)
ea1 = r'ـ|ِ|ُ|َ'
eb1 = r''
#ec1 = sub(ea1, eb1, nc9)
ec1 = nc9
sa1 = r'( )+'
sb1 = r' '
sc1 = sub(sa1, sb1, ec1)
sa2 = r'(\n)+'
sb2 = r'\n'
sc2 = sub(sa2, sb2, sc1)
espa0 = u'\u200e|\u200f| '
espb0 = ' '
espc0 = sub(espa0, espb0, sc2)
return espc0
def space_correction(self, doc_string):
a00 = r'^(بی|می|نمی)( )'
b00 = r'\1'
c00 = sub(a00, b00, doc_string)
a0 = r'( )(می|نمی|بی)( )'
b0 = r'\1\2'
c0 = sub(a0, b0, c00)
a1 = r'( )(هایی|ها|های|ایی|هایم|هایت|هایش|هایمان|هایتان|هایشان|ات|ان|ین' \
r'|انی|بان|ام|ای|یم|ید|اید|اند|بودم|بودی|بود|بودیم|بودید|بودند|ست)( )'
b1 = r'\2\3'
c1 = sub(a1, b1, c0)
a2 = r'( )(شده|نشده)( )'
b2 = r'\2'
c2 = sub(a2, b2, c1)
a3 = r'( )(طلبان|طلب|گرایی|گرایان|شناس|شناسی|گذاری|گذار|گذاران|شناسان|گیری|پذیری|بندی|آوری|سازی|' \
r'بندی|کننده|کنندگان|گیری|پرداز|پردازی|پردازان|آمیز|سنجی|ریزی|داری|دهنده|آمیز|پذیری' \
r'|پذیر|پذیران|گر|ریز|ریزی|رسانی|یاب|یابی|گانه|گانهای|انگاری|گا|بند|رسانی|دهندگان|دار)( )'
b3 = r'\2\3'
c3 = sub(a3, b3, c2)
return c3
def space_correction_plus1(self, doc_string):
out_sentences = ''
for wrd in doc_string.split(' '):
try:
out_sentences = out_sentences + ' ' + self.dic1[wrd]
except KeyError:
out_sentences = out_sentences + ' ' + wrd
return out_sentences
def space_correction_plus2(self, doc_string):
out_sentences = ''
wrds = doc_string.split(' ')
word_len = wrds.__len__()
if word_len < 2:
return doc_string
cnt = 1
for i in range(0, word_len - 1):
w = wrds[i] + wrds[i + 1]
try:
out_sentences = out_sentences + ' ' + self.dic2[w]
cnt = 0
except KeyError:
if cnt == 1:
out_sentences = out_sentences + ' ' + wrds[i]
cnt = 1
if cnt == 1:
out_sentences = out_sentences + ' ' + wrds[i + 1]
return out_sentences
def space_correction_plus3(self, doc_string):
# Dict = {'گفتوگو': 'گفتوگو'}
out_sentences = ''
wrds = doc_string.split(' ')
word_len = wrds.__len__()
if word_len < 3:
return doc_string
cnt = 1
cnt2 = 0
for i in range(0, word_len - 2):
w = wrds[i] + wrds[i + 1] + wrds[i + 2]
try:
out_sentences = out_sentences + ' ' + self.dic3[w]
cnt = 0
cnt2 = 2
except KeyError:
if cnt == 1 and cnt2 == 0:
out_sentences = out_sentences + ' ' + wrds[i]
else:
cnt2 -= 1
cnt = 1
if cnt == 1 and cnt2 == 0:
out_sentences = out_sentences + ' ' + wrds[i + 1] + ' ' + wrds[i + 2]
elif cnt == 1 and cnt2 == 1:
out_sentences = out_sentences + ' ' + wrds[i + 2]
return out_sentences
def replace_puncs(self, doc_string):
repeat_pattern = \
r"((?<!\.)\.(?!\.)|\.{3}\.*|_|،|,|\(|\)|:|\?|!|<|>|\-|;|\[|\]|\{|\}|»|«|\^|'|\\|¡|~|©|،|؟|؛|\")\1+"
doc_strig = re.sub(repeat_pattern, r"\1", doc_string)
pattern = r'(?<!\.)\.(?!\.)|\.{3}\.*|_|،|,|\(|\)|:|\?|!|<|>|\-|;|\[|\]|\{|\}|»|«|\^|\'|\\|¡|~|©|،|؟|؛|\"'
clauses = [i.strip() for i in list(filter(None, re.split(pattern, doc_string)))]
result = ' | '.join(clauses)
return result
def split_digit_from_alphabet(self, doc_string):
doc_string = re.sub(r'(\d)([^\d\s])', r'\1 \2', doc_string)
doc_string = re.sub(r'(\D)([^\D\s])', r'\1 \2', doc_string)
return doc_string
def normalize(self, doc_string, new_line_elimination=False):
normalized_string = doc_string
normalized_string = self.dictaition_normalizer.remove_extra_space_zwnj(normalized_string)
normalized_string = self.sub_alphabets(normalized_string)
normalized_string = self.replace_abbrv(normalized_string)
normalized_string = self.replace_special_symbols(normalized_string)
normalized_string = self.data_helper.clean_text(normalized_string, new_line_elimination).strip()
normalized_string = self.split_digit_from_alphabet(normalized_string)
normalized_string = self.split_phoneme_in_persian_and_eng_from_rest(normalized_string)
if self.date_normalizing_needed:
normalized_string = self.date_normalizer.normalize_dates(normalized_string)
if self.time_normalizing_needed:
normalized_string = self.time_normalizer.normalize_time(normalized_string)
if self.number2text_needed:
normalized_string = sub(r'[\u06F0-\u06F90-9]+', lambda x: unidecode(x.group(0)), normalized_string)
n = NumberNormalizer()
normalized_string = sub(r'[0-9]+', lambda x: n.convert(x.group(0)), normalized_string)
if self.statistical_space_correction:
token_list = normalized_string.strip().split()
token_list = [x.strip("\u200c") for x in token_list if len(x.strip("\u200c")) != 0]
token_list = self.token_merger.merg_tokens(token_list, self.token_merger_model, self.half_space_char)
normalized_string = " ".join(x for x in token_list)
normalized_string = self.data_helper.clean_text(normalized_string, new_line_elimination)
else:
normalized_string = self.space_correction(self.space_correction_plus1(self.space_correction_plus2(
self.space_correction_plus3(normalized_string)))).strip()
if self.pinglish_conversion_needed:
normalized_string = self.pinglish_conversion.pingilish2persian(
self.tokenizer.tokenize_words(normalized_string))
normalized_string = self.replace_puncs(normalized_string)
if self.half_space_corrector:
normalized_string = self.dictaition_normalizer.remove_extra_space_zwnj(normalized_string)
normalized_string = self.dictaition_normalizer.join_words_without_rules(normalized_string)
normalized_string = self.dictaition_normalizer.correct_compound(normalized_string, 5)
normalized_string = self.dictaition_normalizer.half_space_corrector(normalized_string)
return normalized_string
def split_phoneme_in_persian_and_eng_from_rest(self, doc_string):
doc_string = re.sub(r'([\u0622-\u06f0])([^\u0622-\u06f0])', r'\1 \2', doc_string)
doc_string = re.sub(r'([a-z|A-Z])([^a-z|^A-Z])', r'\1 \2', doc_string)
return doc_string
class DateNormalizer:
def __init__(self):
self.nn = NumberNormalizer()
self.persian_month_dict = {'فروردين': 1, 'ارديبهشت': 2, 'خرداد': 3, 'تير': 4, 'مرداد': 5,
'شهريور': 6, 'مهر': 7, 'آبان': 8, 'آذر': 9, 'دي': 10, 'بهمن': 11, 'اسفند': 12}
self.christian_month_dict = {'ژانویه': 1, 'فوریه': 2, 'مارس': 3, 'آپریل': 4, 'می': 5, 'ژوئن': 6, 'جولای': 7,
'آگوست': 8, 'سپتامبر': 9, 'اکتبر': 10, 'نوامبر': 11, 'دسامبر': 12}
self.num_dict = {'چهار': 4, 'سه': 3, 'دو': 2, 'يك': 1, 'يازده': 11, 'سيزده': 13, 'چهارده': 14, 'دوازده': 12,
'پانزده': 15, 'شانزده': 16, 'چهارم': 4, 'سوم': 3, 'دوم': 2, 'يكم': 1, 'اول': 1, 'يازدهم': 11,
'سيزدهم': 13, 'چهاردهم': 14, 'دوازدهم': 12, 'پانزدهم': 15, 'شانزدهم': 16, 'هفدهم': 17,
'هجدهم': 18, 'نوزدهم': 19, 'بيستم': 20, 'چهلم': 40, 'پنجاهم': 50, 'شصتم': 60, 'هفتادم': 70,
'نودم': 90, 'سيصدم': 300, 'چهارصدم': 400, 'پانصدم': 500, 'ششصدم': 600, 'هفتصدم': 700,
'هشتصدم': 800, 'نهصدم': 900, 'هشتادم': 80, 'هزار': 1000, 'ميليون': 1000000, 'دويست': 200,
'ده': 10, 'نه': 9, 'هشت': 8, 'هفت': 7, 'شش': 6, 'پنج': 5, 'هفده': 17, 'هجده': 18, 'نوزده': 19,
'بيست': 20, 'سي': 30, 'چهل': 40, 'پنجاه': 50, 'شصت': 60, 'هفتاد': 70, 'نود': 90, 'سيصد': 300,
'چهارصد': 400, 'پانصد': 500, 'ششصد': 600, 'هفتصد': 700, 'هشتصد': 800, 'نهصد': 900,
'هشتاد': 80, ' ': 0, 'ميليارد': 1000000000, 'صدم': 100, 'هزارم': 1000, 'دويستم': 200,
'دهم': 10, 'نهم': 9, 'هشتم': 8, 'هفتم': 7, 'ششم': 6, 'پنجم': 5}
def find_date_part(self, doc_string):
persian_date_regex = re.compile(r'\b(1[0-4]\d\d|[3-9][2-9])([\s]*[/.\-][\s]*)([1-9]|0[1-9]|1[0-2])'
r'([\s]*[/.\-][\s]*)([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])\b')
persian_date_regex_rev = re.compile(
r'\b([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])([\s]*[/.\-][\s]*)([1-9]|0[1-9]|1[0-2])'
r'([\s]*[/.-][\s]*)(1[0-4][\d][\d]|[3-9][2-9])\b')
persian_date_md_regex = re.compile(r'(?<![/.\-])([0[1-9]|[1-9]|1[0-2])([\s]*[/.\-][\s]*)'
r'([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])[\s]*(?![/.\-])')
christian_date_regex = re.compile(r'\b([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])([\s]*[/.\-][\s]*)'
r'([1-9]|0[1-9]|1[0-2])([\s]*[/.\-][\s]*)(1[5-9][0-9][0-9]|2[0][0-9][0-9])|'
r'([1-9]|0[1-9]|1[0-2])([\s]*[/.\-][\s]*)([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])'
r'([\s]*[/.\-][\s]*)(1[5-9][0-9][0-9]|2[0][0-9][0-9])|'
r'(1[5-9][0-9][0-9]|2[0][0-9][0-9])([\s]*[/.\-][\s]*)([1-9]|0[1-9]|1[0-2])'
r'([\s]*[/.\-][\s]*)([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])\b')
keywords_date = ['مورخ', 'مورخه', 'تاريخ', 'شمسي', 'ميلادي', 'قمري', 'هجري']
persian_result = []
christian_result = []
for match in persian_date_regex.finditer(doc_string):
persian_result.append([*match.span(), int(match[5]), int(match[3]), int(match[1])])
for match in persian_date_regex_rev.finditer(doc_string):
persian_result.append([*match.span(), int(match[1]), int(match[3]), int(match[5])])
for match in christian_date_regex.finditer(doc_string):
a = False
for s in persian_result:
if range(max(s[0], match.start()), min(s[1], match.end())):
a = True
if not a:
if match[11] is not None:
christian_result.append([*match.span(), int(match[15]), int(match[13]), int(match[11])])
elif match[6] is not None:
christian_result.append([*match.span(), int(match[10]), int(match[8]), int(match[6])])
elif match[1] is not None:
christian_result.append([*match.span(), int(match[5]), int(match[3]), int(match[1])])
for match in persian_date_md_regex.finditer(doc_string):
if ngram_lookup(doc_string, match.start(), match.end(), keywords_date, 3) and \
not ngram_lookup(doc_string, match.start(), match.end(), keywords_date, 3):
a = False
for s in persian_result + christian_result:
if range(max(s[0], match.start()), min(s[1], match.end())):
a = True
if not a:
persian_result.append([*match.span(), int(match[3]), int(match[1])])
return [sorted(persian_result), sorted(christian_result)]
def date_to_text_persian(self, doc_string, finded_dates, christian_dates):
for i in range(len(finded_dates)):
finded_date = finded_dates[i]
str_date = ''
str_date += self.nn.convert_ordinary(finded_date[2]) + ' '
str_date += list(self.persian_month_dict.keys())[int(finded_date[3]) - 1] + ' '
if len(finded_date) == 5:
str_date += self.nn.convert(finded_date[4]) + ' '
if str_date and str_date[-1] != ' ':
str_date += ' '
start_date_index = finded_date[0]
end_date_index = finded_date[1]
doc_string = doc_string[:start_date_index] + str_date + doc_string[end_date_index:]
for j in range(i + 1, len(finded_dates)):
finded_dates[j][0] += len(str_date) - (end_date_index - start_date_index)
finded_dates[j][1] += len(str_date) - (end_date_index - start_date_index)
for j in range(i + 1, len(christian_dates)):
christian_dates[j][0] += len(str_date) - (end_date_index - start_date_index)
christian_dates[j][1] += len(str_date) - (end_date_index - start_date_index)
return doc_string, christian_dates
def date_to_text_christian(self, doc_string, finded_dates):
for i in range(len(finded_dates)):
finded_date = finded_dates[i]
str_date = ''
str_date += self.nn.convert_ordinary(finded_date[2]) + ' '
str_date += list(self.christian_month_dict.keys())[int(finded_date[3]) - 1] + ' '
if len(finded_date) == 5:
str_date += self.nn.convert(finded_date[4]) + ' '
if str_date and str_date[-1] != ' ':
str_date += ' '
start_date_index = finded_date[0]
end_date_index = finded_date[1]
doc_string = doc_string[:start_date_index] + str_date + doc_string[end_date_index:]
for j in range(i + 1, len(finded_dates)):
finded_dates[j][0] += len(str_date) - (end_date_index - start_date_index)
finded_dates[j][1] += len(str_date) - (end_date_index - start_date_index)
return doc_string
def normalize_dates(self, doc_string):
finded_dates = self.find_date_part(doc_string)
doc_string, finded_dates[1] = self.date_to_text_persian(doc_string, finded_dates[0], finded_dates[1])
doc_string = self.date_to_text_christian(doc_string, finded_dates[1])
return doc_string
def list2num(self, numerical_section_list):
value = 1
for index, el in enumerate(numerical_section_list):
if self.is_number(el):
value *= self.num_dict[el]
else:
value *= float(el)
return value
def convert2num(self, numerical_section_list):
value = 0
tmp_section_list = []
for index, el in enumerate(numerical_section_list):
if self.is_number(el) or (el.replace('.', '', 1).isdigit()):
tmp_section_list.append(el)
elif el == "و":
value += self.list2num(tmp_section_list)
tmp_section_list[:] = []
if len(tmp_section_list) > 0:
value += self.list2num(tmp_section_list)
tmp_section_list[:] = []
if value - int(value) == 0:
return int(value)
else:
return value
def is_number(self, word):
return word in self.num_dict
def find_number_location(self, token_list):
start_index = 0
number_section = []
for i, el in enumerate(token_list):
if self.is_number(el) or (el.replace('.', '', 1).isdigit()):
start_index = i
number_section.append(start_index)
break
i = start_index + 1
while i < len(token_list):
if token_list[i] == "و" and (i + 1) < len(token_list):
if self.is_number(token_list[i + 1]) or (token_list[i + 1].replace('.', '', 1).isdigit()):
number_section.append(i)
number_section.append(i + 1)
i += 2
else:
break
elif self.is_number(token_list[i]) or (token_list[i].replace('.', '', 1).isdigit()):
number_section.append(i)
i += 1
else:
break
return number_section
def normalize_numbers(self, token_list, converted=""):
for i, el in enumerate(token_list):
if el.endswith("ین") and self.is_number(el[:-2]):
token_list[i] = el[:-2]
finded = self.find_number_location(token_list)
if len(finded) == 0:
rest_of_string = " ".join(t for t in token_list)
return converted + " " + rest_of_string
else:
numerical_subsection = [token_list[x] for x in finded]
numerical_subsection = self.convert2num(numerical_subsection)
converted = converted + " " + " ".join(x for x in token_list[:finded[0]]) + " " + str(numerical_subsection)
new_index = finded[-1] + 1
return self.normalize_numbers(token_list[new_index:], converted)
class NumberNormalizer:
def __init__(self):
self.faBaseNum = {1: 'يك', 2: 'دو', 3: 'سه', 4: 'چهار', 5: 'پنج', 6: 'شِش', 7: 'هفت', 8: 'هشت', 9: 'نُه',
10: 'دَه', 11: 'يازده', 12: 'دوازده', 13: 'سيزده', 14: 'چهارده', 15: 'پانزده', 16: 'شانزده',
17: 'هفده', 18: 'هجده', 19: 'نوزده', 20: 'بيست', 30: 'سي', 40: 'چهل', 50: 'پنجاه', 60: 'شصت',
70: 'هفتاد', 80: 'هشتاد', 90: 'نود', 100: 'صد', 200: 'دويست', 300: 'سيصد', 500: 'پانصد'}
self.faBaseNumKeys = self.faBaseNum.keys()
self.faBigNum = ["يك", "هزار", "ميليون", "ميليارد"]
self.faBigNumSize = len(self.faBigNum)
def split3(self, st):
parts = []
n = len(st)
d, m = divmod(n, 3)
for i in range(d):
parts.append(int(st[n - 3 * i - 3:n - 3 * i]))
if m > 0:
parts.append(int(st[:m]))
return parts
def convert(self, st):
st = str(st)
if len(st) > 3:
parts = self.split3(st)
k = len(parts)
wparts = []
for i in range(k):
p = parts[i]
if p == 0:
continue
if i == 0:
wpart = self.convert(p)
else:
if i < self.faBigNumSize:
fa_order = self.faBigNum[i]
else:
fa_order = ''
(d, m) = divmod(i, 3)
t9 = self.faBigNum[3]
for j in range(d):
if j > 0:
fa_order += ""
fa_order += t9
if m != 0:
if fa_order != '':
fa_order = "" + fa_order
fa_order = self.faBigNum[m] + fa_order
wpart = fa_order if i == 1 and p == 1 else self.convert(p) + " " + fa_order
wparts.append(wpart)
return " وَ ".join(reversed(wparts))
# now assume that n <= 999
n = int(st)
if n in self.faBaseNumKeys:
return self.faBaseNum[n]
y = n % 10
d = int((n % 100) / 10)
s = int(n / 100)
# print s, d, y
dy = 10 * d + y
fa = ''
if s != 0:
if s * 100 in self.faBaseNumKeys:
fa += self.faBaseNum[s * 100]
else:
fa += (self.faBaseNum[s] + self.faBaseNum[100])
if d != 0 or y != 0:
fa += " وَ "
if d != 0:
if dy in self.faBaseNumKeys:
fa += self.faBaseNum[dy]
return fa
fa += self.faBaseNum[d * 10]
if y != 0:
fa += " وَ "
if y != 0:
fa += self.faBaseNum[y]
return fa
def convert_ordinary(self, arg):
if isinstance(arg, int):
num = arg
st = str(arg)
elif isinstance(arg, str):
num = int(arg)
st = arg
else:
raise TypeError('bad type "%s"' % type(arg))
if num == 1:
return 'اول' # OR 'یکم'fixme
elif num == 10:
return 'دهم'
norm_fa = self.convert(st)
if len(norm_fa) == 0:
return ''
if norm_fa.endswith(u'ی'):
norm_fa += u'ام'
elif norm_fa.endswith(u'سه'):
norm_fa = norm_fa[:-1] + u'وم'
else:
norm_fa += u'م'
return norm_fa
class PinglishNormalizer:
def __init__(self):
self.data_helper = DataHelper()
self.file_dir = os.path.dirname(os.path.realpath(__file__)) + "/"
self.en_dict_filename = self.file_dir + "resource/tokenizer/enDict"
self.en_dict = self.data_helper.load_var(self.en_dict_filename)
self.fa_dict_filename = self.file_dir + "resource/tokenizer/faDict"
self.fa_dict = self.data_helper.load_var(self.fa_dict_filename)
def pingilish2persian(self, pinglish_words_list):
for i, word in enumerate(pinglish_words_list):
if word in self.en_dict:
pinglish_words_list[i] = self.en_dict[word] # .decode("utf-8")
# inp = inp.replace(word, enDict[word], 1)
else:
ch = self.characterize(word)
pr = self.map_char(ch)
amir = self.make_word(pr)
for wd in amir:
am = self.escalation(wd)
asd = ''.join(am)
if asd in self.fa_dict:
pinglish_words_list[i] = asd # .decode("utf-8")
# inp = inp.replace(word, asd, 1)
inp = " ".join(x for x in pinglish_words_list)
return inp
def characterize(self, word):
list_of_char = []
i = 0
while i < len(word):
char = word[i]
sw_out = self.switcher(char)
if sw_out is None:
esp_out = None
if i < len(word) - 1:
esp_out = self.esp_check(word[i], word[i + 1])
if esp_out is None:
list_of_char.append(word[i])
else:
list_of_char.append(esp_out)
i += 1
else:
list_of_char.append(sw_out)
i += 1
return list_of_char
def switcher(self, ch):
switcher = {
"c": None,
"k": None,
"z": None,
"s": None,
"g": None,
"a": None,
"u": None,
"e": None,
"o": None
}
return switcher.get(ch, ch)
def esp_check(self, char1, char2):
st = char1 + char2
if st == "ch":
return "ch"
elif st == "kh":
return "kh"
elif st == "zh":
return "zh"
elif st == "sh":
return "sh"
elif st == "gh":
return "gh"
elif st == "aa":
return "aa"
elif st == "ee":
return "ee"
elif st == "oo":
return "oo"
elif st == "ou":
return "ou"
else:
return None
def map_char(self, word):
listm = []
sw_out = self.map_switcher(word[0])
i = 0
if sw_out is None:
listm.append(["ا"])
i += 1
if word[0] == "oo":
listm.append(["او"])
i += 1
while i < len(word):
listm.append(self.char_switcher(word[i]))
i += 1
if word[len(word) - 1] == "e":
listm.append(["ه"])
elif word[len(word) - 1] == "a":
listm.append(["ا"])
elif word[len(word) - 1] == "o":
listm.append(["و"])
elif word[len(word) - 1] == "u":
listm.append(["و"])
return listm
def map_switcher(self, ch):
switcher = {
"a": None,
"e": None,
"o": None,
"u": None,
"ee": None,
"ou": None
}
return switcher.get(ch, ch)
def make_word(self, chp):
word_list = [[]]
for char in chp:
word_list_temp = []
for tmp_word_list in word_list:
for chch in char:
tmp = copy.deepcopy(tmp_word_list)
tmp.append(chch)
word_list_temp.append(tmp)
word_list = word_list_temp
return word_list
def escalation(self, word):
tmp = []
i = 0
t = len(word)
while i < t - 1:
tmp.append(word[i])
if word[i] == word[i + 1]:
i += 1
i += 1
if i != t:
tmp.append(word[i])
return tmp
def char_switcher(self, ch):
switcher = {
'a': ["", "ا"],
'c': ["ث", "ص", "ص"],
'h': ["ه", "ح"],
'b': ["ب"],
'p': ["پ"],
't': ["ت", "ط"],
's': ["س", "ص", "ث"],
'j': ["ج"],
'ch': ["چ"],
'kh': ["خ"],
'q': ["ق", "غ"],
'd': ["د"],
'z': ["ز", "ذ", "ض", "ظ"],
'r': ["ر"],
'zh': ["ژ"],
'sh': ["ش"],
'gh': [",ق", "غ"],
'f': ["ف"],
'k': ["ک"],
'g': ["گ"],
'l': ["ل"],
'm': ["م"],
'n': ["ن"],
'v': ["و"],
'aa': ["ا"],
'ee': ["ی"],
'oo': ["و"],
'ou': ["و"],
'i': ["ی"],
'y': ["ی"],
' ': [""],
'w': ["و"],
'e': ["", "ه"],
'o': ["", "و"]
}
return switcher.get(ch, "")
class DictatioinNormalizer:
def __init__(self, zwnj_database_path='./Parsivar/resource/normalizer/N_cctt.txt',
compound_table_path='./Parsivar/resource/normalizer/Normalizer_WrongCompound.txt'):
self.zwnj_table, self.zwnj_type = self.load_zwnj_database(zwnj_database_path)
self.compound_table = self.load_compound_table(compound_table_path)
look_up_t_farsi_str = './g2p_resources/look_up_t_farsi_extra_of_ariana_b_punch_EN_extra_of_nevisa.pkl'
homograph_t_str = './g2p_resources/list_homograph.pkl'
with open(look_up_t_farsi_str, 'rb') as f:
self.look_up_t_farsi = pickle.load(f)
with open(homograph_t_str, 'rb') as f:
self.homograph = pickle.load(f)
self.half_space_data = [half_space_group for half_space_group in self.look_up_t_farsi
if isinstance(half_space_group, str) and re.findall('\u200c', half_space_group)] + \
[half_space_group for half_space_group in self.homograph
if isinstance(half_space_group, str) and re.findall('\u200c', half_space_group)]
self.half_space_data_splited = [word_group.split('\u200c') for word_group in self.half_space_data]
self.half_space_data_joined = dict()
for i in self.half_space_data_splited:
for j in range(len(i)):
for k in range(j + 1, len(i)):
self.half_space_data_joined["".join(i[j:k + 1])] = '\u200c'.join(i[j:k + 1])
def remove_extra_space_zwnj(self, doc_string):
extra_regex = re.compile(r'([\u0648\u0624\u062f\u0630\u0631\u0632\u0698\u0627'
r'\u0622\u0654\u0621\u0623\u0625\u0060][\u0627\u064b][\u0621\u064b])(\u200c)')
doc_string = extra_regex.sub('\1', doc_string)
extra_regex = re.compile(r'([\u0030-\u0039])(\u200c)')
doc_string = extra_regex.sub('\1', doc_string)
extra_regex = re.compile(r'(\u200c)([\u0030-\u0039])')
doc_string = extra_regex.sub('\2', doc_string)
extra_regex = re.compile(r'([a-z|A-Z])(\u200c)')
doc_string = extra_regex.sub('\1', doc_string)
extra_regex = re.compile(r'(\u200c)([a-z|A-Z])')
doc_string = extra_regex.sub('\2', doc_string)
extra_regex = re.compile(r'[\s]{2,}')
doc_string = extra_regex.sub(' ', doc_string)
extra_regex = re.compile(r'[\u200c]{2,}')
doc_string = extra_regex.sub('\u200c', doc_string)
extra_regex = re.compile(r'\u200c\s')
doc_string = extra_regex.sub(' ', doc_string)
extra_regex = re.compile(r'\s\u200c')
doc_string = extra_regex.sub(' ', doc_string)
return doc_string
def correct_compound(self, doc_string, neighborhood):
word_list = doc_string.split()
if neighborhood > len(word_list):
neighborhood = len(word_list)
output_list = []
i = 0
while i < len(word_list):
for j in range(neighborhood, 0, -1):
if i + j < len(word_list):
comp = " ".join(word_list[i:i + j])
else:
comp = " ".join(word_list[i:])
if comp in self.compound_table:
output_list.append(self.compound_table[comp])
i += j
break
else:
output_list.append(word_list[i])
i += 1
return " ".join(output_list)
def half_space_corrector(self, string):
word_list = string.split()
word_list = [word.strip('\u200c') for word in word_list]
word_index = 0
result = []
while word_index < len(word_list):
a=1
if word_list[word_index] in self.half_space_data_joined and \
word_list[word_index] not in self.look_up_t_farsi and word_list[word_index] not in self.homograph:
word_list[word_index] = self.half_space_data_joined[word_list[word_index]]
possible_words = [i for i in self.half_space_data_splited if word_list[word_index] == i[0]
and word_index + 1 < len(word_list) and word_list[word_index + 1] == i[1]]
best_words = [word_list[word_index]]
max_match = 0
if possible_words:
for j in possible_words:
for k in range(len(j)):
if k >= len(word_list):
break
if len(word_list) <= word_index+k or j[k] != word_list[word_index + k]:
break
if max_match < k:
max_match = k
best_words = j[:k + 1]
else:
if word_index + 1 < len(word_list) and (word_list[word_index + 1] in
['ام', 'ات', 'اش', 'مان', 'شان', 'تان', 'ايم', 'ايد', 'اند',
'اي', 'ها', 'هاي', 'هايي', 'هايم', 'هايشان', 'هايتان',
'هايمان', 'هايت', 'هايش', 'هائي' 'تر', 'ترين', 'ي', 'يي']
or word_list[word_index] in ['مي', 'نمي', 'برنمي', 'درمي',
'درنمي']):
best_words = [word_list[word_index], word_list[word_index + 1]]
max_match = 1
result.append('\u200c'.join(best_words))
word_index += max_match + 1
result = " ".join(result)
return result
def hamze_corrector(self, string):
word_list = string.split()
for word in word_list:
if word not in self.homograph + self.look_up_t_farsi:
pass
def load_zwnj_database(self, zwnj_database_file):
table_words = dict()
words_type = dict()
with open(zwnj_database_file, 'r') as f:
for line in f:
cols = line.split('\t')
connection_type = cols[0]
incorrect_word = cols[1]
correct_word = cols[2].replace(' ', '_')
table_words[incorrect_word.replace('\u200c', '^')] = correct_word
if connection_type in ["مجزا", "به قبلي", "به بعدي"]:
words_type[correct_word.replace('\u200c', '^')] = connection_type
return table_words, words_type
def is_english_grapheme(self, char):
return 'a' < char < 'z' or 'A' < char < 'Z'
def is_english_word(self, word):
return self.is_english_grapheme(word[0])
def is_punctuation(self, char):
return char in ['-', '=', '~', '!', '@', '#', '$', '%', '^', '&', '*', '(', ')', '_', '+', '[', '{', ']', '}',
':', ';', '\'', '\"', ',', '<', '.', '>', '/', '?', '|', '\\', '÷', '٬', '٫', '٪', '×', '،',
'»', '«', '؛', '؟', '…', '”', 'ˈ']
def join_words_without_rules(self, docstring):
words = docstring.split()
correct_docstring = []
for ind in range(len(words)):
word = words[ind]
table_word = word.replace('\u200c', '^')
if table_word in self.zwnj_type.keys():
if self.zwnj_type[table_word] == "مجزا":
correct_docstring.append(self.zwnj_table[table_word].replace('_', ' '))
elif self.zwnj_type[table_word] == "به قبلي":
if correct_docstring and not self.is_english_word(correct_docstring[-1]) \
and not self.is_punctuation(correct_docstring[-1][-1]):
correct_docstring.append('\u200c' + self.zwnj_table[table_word])
else:
correct_docstring.append(self.zwnj_table[table_word])
elif self.zwnj_type[table_word] == "به بعدي":
if ind < len(words) - 1 and not self.is_english_word(words[ind + 1]) \
and not self.is_punctuation(words[ind + 1][0]):
correct_docstring.append(self.zwnj_table[table_word] + '\u200c')
else:
correct_docstring.append(self.zwnj_table[table_word])
else:
correct_docstring.append(word)
return " ".join(correct_docstring)
def load_compound_table(self, compound_table_path):
compound_table = dict()
with open(compound_table_path, 'r') as f:
for line in f:
firstcol, secondcol = line.split('\t')
compound_table[firstcol] = secondcol
return compound_table
class TimeNormalizer:
def __init__(self, spanning=2):
self.numberNorm = NumberNormalizer()
self.spanning = spanning
def normalize_time(self, doc_string):
time_regex = re.compile(r'([0-9]|0[0-9]|1[0-9]|2[0-4])[\s]*([:\-])[\s]*([0-5][\d]|60)[\']?'
r'[\s]*(([:\-])[\s]*([0-5][\d]|60)[\"]?)?')
keywords_time1 = ['وقت', 'مدت', 'زمان']
keywords_time2 = ['عصر', 'شب', 'غروب', 'ظهر', 'صبح', 'ساعت', 'بامداد']
while time_regex.search(doc_string):
match = time_regex.search(doc_string)
if ngram_lookup(doc_string, match.start(), match.end(), keywords_time1, self.spanning) and \
not ngram_lookup(doc_string, match.start(), match.end(), keywords_time2, self.spanning):
if match[6] is not None:
hour = int(match[1])
minute = int(match[3])
second = int(match[6])
doc_string = self.time_duration_to_text_sec(doc_string, match.start(), match.end(),
hour, minute, second)
else:
hour = int(match[1])
minute = int(match[3])
doc_string = self.time_duration_to_text(doc_string, match.start(), match.end(), hour, minute)
else:
if match[6] is not None:
hour = int(match[1])
minute = int(match[3])
second = int(match[6])
doc_string = self.time_to_text_sec(doc_string, match.start(), match.end(), hour, minute, second)
else:
hour = int(match[1])
minute = int(match[3])
doc_string = self.time_to_text(doc_string, match.start(), match.end(), hour, minute)
return doc_string
def time_duration_to_text_sec(self, doc_string, start, end, hour, minute, second):
string = self.numberNorm.convert(hour) + ' ساعت وَ ' + self.numberNorm.convert(minute) + ' دقیقه وَ ' + \
self.numberNorm.convert(second) + ' ثانیه'
doc_string = doc_string[:start] + string + doc_string[end:]
return doc_string
def time_duration_to_text(self, doc_string, start, end, hour, minute):
string = self.numberNorm.convert(hour) + ' ساعت وَ ' + self.numberNorm.convert(minute) + ' دقیقه '
doc_string = doc_string[:start] + string + doc_string[end:]
return doc_string
def time_to_text_sec(self, doc_string, start, end, hour, minute, second):
string = self.numberNorm.convert(hour) + ' وَ ' + self.numberNorm.convert(minute) + ' وَ ' + \
self.numberNorm.convert(second) + ' ثانیه '
doc_string = doc_string[:start] + string + doc_string[end:]
return doc_string
def time_to_text(self, doc_string, start, end, hour, minute):
string = self.numberNorm.convert(hour) + ' وَ' \
' ' + self.numberNorm.convert(minute) + ' دقیقه '
doc_string = doc_string[:start] + string + doc_string[end:]
return doc_string
def ngram_lookup(doc_string, start, end, word_list, span):
result = False
for spanns in range(1, span):
if any(x in word_list for x in doc_string[:start].rsplit(maxsplit=spanns + 1)[-spanns:]):
result = True
if any(x in word_list for x in doc_string[end:].split(maxsplit=spanns + 1)[:spanns]):
result = True
return result
|