File size: 32,078 Bytes
551c68e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
"""The main page for the Trackio UI."""

import os
import re
import shutil
from dataclasses import dataclass
from typing import Any

import gradio as gr
import huggingface_hub as hf
import numpy as np
import pandas as pd

HfApi = hf.HfApi()

try:
    import trackio.utils as utils
    from trackio.file_storage import FileStorage
    from trackio.media import TrackioImage, TrackioVideo
    from trackio.sqlite_storage import SQLiteStorage
    from trackio.table import Table
    from trackio.typehints import LogEntry, UploadEntry
    from trackio.ui import fns
    from trackio.ui.run_detail import run_detail_page
    from trackio.ui.runs import run_page
except ImportError:
    import utils
    from file_storage import FileStorage
    from media import TrackioImage, TrackioVideo
    from sqlite_storage import SQLiteStorage
    from table import Table
    from typehints import LogEntry, UploadEntry
    from ui import fns
    from ui.run_detail import run_detail_page
    from ui.runs import run_page


def get_runs(project) -> list[str]:
    if not project:
        return []
    return SQLiteStorage.get_runs(project)


def get_available_metrics(project: str, runs: list[str]) -> list[str]:
    """Get all available metrics across all runs for x-axis selection."""
    if not project or not runs:
        return ["step", "time"]

    all_metrics = set()
    for run in runs:
        metrics = SQLiteStorage.get_logs(project, run)
        if metrics:
            df = pd.DataFrame(metrics)
            numeric_cols = df.select_dtypes(include="number").columns
            numeric_cols = [c for c in numeric_cols if c not in utils.RESERVED_KEYS]
            all_metrics.update(numeric_cols)

    all_metrics.add("step")
    all_metrics.add("time")

    sorted_metrics = utils.sort_metrics_by_prefix(list(all_metrics))

    result = ["step", "time"]
    for metric in sorted_metrics:
        if metric not in result:
            result.append(metric)

    return result


@dataclass
class MediaData:
    caption: str | None
    file_path: str


def extract_media(logs: list[dict]) -> dict[str, list[MediaData]]:
    media_by_key: dict[str, list[MediaData]] = {}
    logs = sorted(logs, key=lambda x: x.get("step", 0))
    for log in logs:
        for key, value in log.items():
            if isinstance(value, dict):
                type = value.get("_type")
                if type == TrackioImage.TYPE or type == TrackioVideo.TYPE:
                    if key not in media_by_key:
                        media_by_key[key] = []
                    try:
                        media_data = MediaData(
                            file_path=utils.MEDIA_DIR / value.get("file_path"),
                            caption=value.get("caption"),
                        )
                        media_by_key[key].append(media_data)
                    except Exception as e:
                        print(f"Media currently unavailable: {key}: {e}")
    return media_by_key


def load_run_data(
    project: str | None,
    run: str | None,
    smoothing_granularity: int,
    x_axis: str,
    log_scale: bool = False,
) -> tuple[pd.DataFrame, dict]:
    if not project or not run:
        return None, None

    logs = SQLiteStorage.get_logs(project, run)
    if not logs:
        return None, None

    media = extract_media(logs)
    df = pd.DataFrame(logs)

    if "step" not in df.columns:
        df["step"] = range(len(df))

    if x_axis == "time" and "timestamp" in df.columns:
        df["timestamp"] = pd.to_datetime(df["timestamp"])
        first_timestamp = df["timestamp"].min()
        df["time"] = (df["timestamp"] - first_timestamp).dt.total_seconds()
        x_column = "time"
    elif x_axis == "step":
        x_column = "step"
    else:
        x_column = x_axis

    if log_scale and x_column in df.columns:
        x_vals = df[x_column]
        if (x_vals <= 0).any():
            df[x_column] = np.log10(np.maximum(x_vals, 0) + 1)
        else:
            df[x_column] = np.log10(x_vals)

    if smoothing_granularity > 0:
        numeric_cols = df.select_dtypes(include="number").columns
        numeric_cols = [c for c in numeric_cols if c not in utils.RESERVED_KEYS]

        df_original = df.copy()
        df_original["run"] = run
        df_original["data_type"] = "original"

        df_smoothed = df.copy()
        window_size = max(3, min(smoothing_granularity, len(df)))
        df_smoothed[numeric_cols] = (
            df_smoothed[numeric_cols]
            .rolling(window=window_size, center=True, min_periods=1)
            .mean()
        )
        df_smoothed["run"] = f"{run}_smoothed"
        df_smoothed["data_type"] = "smoothed"

        combined_df = pd.concat([df_original, df_smoothed], ignore_index=True)
        combined_df["x_axis"] = x_column
        return combined_df, media
    else:
        df["run"] = run
        df["data_type"] = "original"
        df["x_axis"] = x_column
        return df, media


def update_runs(
    project, filter_text, user_interacted_with_runs=False, selected_runs_from_url=None
):
    if project is None:
        runs = []
        num_runs = 0
    else:
        runs = get_runs(project)
        num_runs = len(runs)
        if filter_text:
            runs = [r for r in runs if filter_text in r]

    if not user_interacted_with_runs:
        if selected_runs_from_url:
            value = [r for r in runs if r in selected_runs_from_url]
        else:
            value = runs
        return gr.CheckboxGroup(choices=runs, value=value), gr.Textbox(
            label=f"Runs ({num_runs})"
        )
    else:
        return gr.CheckboxGroup(choices=runs), gr.Textbox(label=f"Runs ({num_runs})")


def filter_runs(project, filter_text):
    runs = get_runs(project)
    runs = [r for r in runs if filter_text in r]
    return gr.CheckboxGroup(choices=runs, value=runs)


def update_x_axis_choices(project, runs):
    """Update x-axis dropdown choices based on available metrics."""
    available_metrics = get_available_metrics(project, runs)
    return gr.Dropdown(
        label="X-axis",
        choices=available_metrics,
        value="step",
    )


def toggle_timer(cb_value):
    if cb_value:
        return gr.Timer(active=True)
    else:
        return gr.Timer(active=False)


def check_auth(hf_token: str | None) -> None:
    if os.getenv("SYSTEM") == "spaces":  # if we are running in Spaces
        # check auth token passed in
        if hf_token is None:
            raise PermissionError(
                "Expected a HF_TOKEN to be provided when logging to a Space"
            )
        who = HfApi.whoami(hf_token)
        access_token = who["auth"]["accessToken"]
        owner_name = os.getenv("SPACE_AUTHOR_NAME")
        repo_name = os.getenv("SPACE_REPO_NAME")
        # make sure the token user is either the author of the space,
        # or is a member of an org that is the author.
        orgs = [o["name"] for o in who["orgs"]]
        if owner_name != who["name"] and owner_name not in orgs:
            raise PermissionError(
                "Expected the provided hf_token to be the user owner of the space, or be a member of the org owner of the space"
            )
        # reject fine-grained tokens without specific repo access
        if access_token["role"] == "fineGrained":
            matched = False
            for item in access_token["fineGrained"]["scoped"]:
                if (
                    item["entity"]["type"] == "space"
                    and item["entity"]["name"] == f"{owner_name}/{repo_name}"
                    and "repo.write" in item["permissions"]
                ):
                    matched = True
                    break
                if (
                    (
                        item["entity"]["type"] == "user"
                        or item["entity"]["type"] == "org"
                    )
                    and item["entity"]["name"] == owner_name
                    and "repo.write" in item["permissions"]
                ):
                    matched = True
                    break
            if not matched:
                raise PermissionError(
                    "Expected the provided hf_token with fine grained permissions to provide write access to the space"
                )
        # reject read-only tokens
        elif access_token["role"] != "write":
            raise PermissionError(
                "Expected the provided hf_token to provide write permissions"
            )


def upload_db_to_space(
    project: str, uploaded_db: gr.FileData, hf_token: str | None
) -> None:
    check_auth(hf_token)
    db_project_path = SQLiteStorage.get_project_db_path(project)
    if os.path.exists(db_project_path):
        raise gr.Error(
            f"Trackio database file already exists for project {project}, cannot overwrite."
        )
    os.makedirs(os.path.dirname(db_project_path), exist_ok=True)
    shutil.copy(uploaded_db["path"], db_project_path)


def bulk_upload_media(uploads: list[UploadEntry], hf_token: str | None) -> None:
    check_auth(hf_token)
    for upload in uploads:
        media_path = FileStorage.init_project_media_path(
            upload["project"], upload["run"], upload["step"]
        )
        shutil.copy(upload["uploaded_file"]["path"], media_path)


def log(
    project: str,
    run: str,
    metrics: dict[str, Any],
    step: int | None,
    hf_token: str | None,
) -> None:
    """
    Note: this method is not used in the latest versions of Trackio (replaced by bulk_log) but
    is kept for backwards compatibility for users who are connecting to a newer version of
    a Trackio Spaces dashboard with an older version of Trackio installed locally.
    """
    check_auth(hf_token)
    SQLiteStorage.log(project=project, run=run, metrics=metrics, step=step)


def bulk_log(
    logs: list[LogEntry],
    hf_token: str | None,
) -> None:
    check_auth(hf_token)

    logs_by_run = {}
    for log_entry in logs:
        key = (log_entry["project"], log_entry["run"])
        if key not in logs_by_run:
            logs_by_run[key] = {"metrics": [], "steps": [], "config": None}
        logs_by_run[key]["metrics"].append(log_entry["metrics"])
        logs_by_run[key]["steps"].append(log_entry.get("step"))
        if log_entry.get("config") and logs_by_run[key]["config"] is None:
            logs_by_run[key]["config"] = log_entry["config"]

    for (project, run), data in logs_by_run.items():
        SQLiteStorage.bulk_log(
            project=project,
            run=run,
            metrics_list=data["metrics"],
            steps=data["steps"],
            config=data["config"],
        )


def filter_metrics_by_regex(metrics: list[str], filter_pattern: str) -> list[str]:
    """
    Filter metrics using regex pattern.

    Args:
        metrics: List of metric names to filter
        filter_pattern: Regex pattern to match against metric names

    Returns:
        List of metric names that match the pattern
    """
    if not filter_pattern.strip():
        return metrics

    try:
        pattern = re.compile(filter_pattern, re.IGNORECASE)
        return [metric for metric in metrics if pattern.search(metric)]
    except re.error:
        return [
            metric for metric in metrics if filter_pattern.lower() in metric.lower()
        ]


def configure(request: gr.Request):
    sidebar_param = request.query_params.get("sidebar")
    match sidebar_param:
        case "collapsed":
            sidebar = gr.Sidebar(open=False, visible=True)
        case "hidden":
            sidebar = gr.Sidebar(open=False, visible=False)
        case _:
            sidebar = gr.Sidebar(open=True, visible=True)

    metrics_param = request.query_params.get("metrics", "")
    runs_param = request.query_params.get("runs", "")
    selected_runs = runs_param.split(",") if runs_param else []
    navbar_param = request.query_params.get("navbar")
    match navbar_param:
        case "hidden":
            navbar = gr.Navbar(visible=False)
        case _:
            navbar = gr.Navbar(visible=True)

    return [], sidebar, metrics_param, selected_runs, navbar


def create_media_section(media_by_run: dict[str, dict[str, list[MediaData]]]):
    with gr.Accordion(label="media"):
        with gr.Group(elem_classes=("media-group")):
            for run, media_by_key in media_by_run.items():
                with gr.Tab(label=run, elem_classes=("media-tab")):
                    for key, media_item in media_by_key.items():
                        gr.Gallery(
                            [(item.file_path, item.caption) for item in media_item],
                            label=key,
                            columns=6,
                            elem_classes=("media-gallery"),
                        )


css = """
#run-cb .wrap { gap: 2px; }
#run-cb .wrap label {
    line-height: 1;
    padding: 6px;
}
.logo-light { display: block; } 
.logo-dark { display: none; }
.dark .logo-light { display: none; }
.dark .logo-dark { display: block; }
.dark .caption-label { color: white; }

.info-container {
    position: relative;
    display: inline;
}
.info-checkbox {
    position: absolute;
    opacity: 0;
    pointer-events: none;
}
.info-icon {
    border-bottom: 1px dotted;
    cursor: pointer;
    user-select: none;
    color: var(--color-accent);
}
.info-expandable {
    display: none;
    opacity: 0;
    transition: opacity 0.2s ease-in-out;
}
.info-checkbox:checked ~ .info-expandable {
    display: inline;
    opacity: 1;
}
.info-icon:hover { opacity: 0.8; }
.accent-link { font-weight: bold; }

.media-gallery .fixed-height { min-height: 275px; }
.media-group, .media-group > div { background: none; }
.media-group .tabs { padding: 0.5em; }
.media-tab { max-height: 500px; overflow-y: scroll; }
"""

javascript = """
<script>
function setCookie(name, value, days) {
    var expires = "";
    if (days) {
        var date = new Date();
        date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000));
        expires = "; expires=" + date.toUTCString();
    }
    document.cookie = name + "=" + (value || "") + expires + "; path=/; SameSite=Lax";
}

function getCookie(name) {
    var nameEQ = name + "=";
    var ca = document.cookie.split(';');
    for(var i=0;i < ca.length;i++) {
        var c = ca[i];
        while (c.charAt(0)==' ') c = c.substring(1,c.length);
        if (c.indexOf(nameEQ) == 0) return c.substring(nameEQ.length,c.length);
    }
    return null;
}

(function() {
    const urlParams = new URLSearchParams(window.location.search);
    const writeToken = urlParams.get('write_token');
    
    if (writeToken) {
        setCookie('trackio_write_token', writeToken, 7);
        
        urlParams.delete('write_token');
        const newUrl = window.location.pathname + 
            (urlParams.toString() ? '?' + urlParams.toString() : '') + 
            window.location.hash;
        window.history.replaceState({}, document.title, newUrl);
    }
})();
</script>
"""


gr.set_static_paths(paths=[utils.MEDIA_DIR])

with gr.Blocks(title="Trackio Dashboard", css=css, head=javascript) as demo:
    with gr.Sidebar(open=False) as sidebar:
        logo = gr.Markdown(
            f"""
                <img src='/gradio_api/file={utils.TRACKIO_LOGO_DIR}/trackio_logo_type_light_transparent.png' width='80%' class='logo-light'>
                <img src='/gradio_api/file={utils.TRACKIO_LOGO_DIR}/trackio_logo_type_dark_transparent.png' width='80%' class='logo-dark'>            
            """
        )
        project_dd = gr.Dropdown(label="Project", allow_custom_value=True)

        embed_code = gr.Code(
            label="Embed this view",
            max_lines=2,
            lines=2,
            language="html",
            visible=bool(os.environ.get("SPACE_HOST")),
        )
        run_tb = gr.Textbox(label="Runs", placeholder="Type to filter...")
        run_cb = gr.CheckboxGroup(
            label="Runs",
            choices=[],
            interactive=True,
            elem_id="run-cb",
            show_select_all=True,
        )
        gr.HTML("<hr>")
        realtime_cb = gr.Checkbox(label="Refresh metrics realtime", value=True)
        smoothing_slider = gr.Slider(
            label="Smoothing Factor",
            minimum=0,
            maximum=20,
            value=10,
            step=1,
            info="0 = no smoothing",
        )
        x_axis_dd = gr.Dropdown(
            label="X-axis",
            choices=["step", "time"],
            value="step",
        )
        log_scale_cb = gr.Checkbox(label="Log scale X-axis", value=False)
        metric_filter_tb = gr.Textbox(
            label="Metric Filter (regex)",
            placeholder="e.g., loss|ndcg@10|gpu",
            value="",
            info="Filter metrics using regex patterns. Leave empty to show all metrics.",
        )

    navbar = gr.Navbar(value=[("Metrics", ""), ("Runs", "/runs")], main_page_name=False)
    timer = gr.Timer(value=1)
    metrics_subset = gr.State([])
    user_interacted_with_run_cb = gr.State(False)
    selected_runs_from_url = gr.State([])

    gr.on(
        [demo.load],
        fn=configure,
        outputs=[
            metrics_subset,
            sidebar,
            metric_filter_tb,
            selected_runs_from_url,
            navbar,
        ],
        queue=False,
        api_name=False,
    )
    gr.on(
        [demo.load],
        fn=fns.get_projects,
        outputs=project_dd,
        show_progress="hidden",
        queue=False,
        api_name=False,
    )
    gr.on(
        [timer.tick],
        fn=update_runs,
        inputs=[
            project_dd,
            run_tb,
            user_interacted_with_run_cb,
            selected_runs_from_url,
        ],
        outputs=[run_cb, run_tb],
        show_progress="hidden",
        api_name=False,
    )
    gr.on(
        [timer.tick],
        fn=lambda: gr.Dropdown(info=fns.get_project_info()),
        outputs=[project_dd],
        show_progress="hidden",
        api_name=False,
    )
    gr.on(
        [demo.load, project_dd.change],
        fn=update_runs,
        inputs=[project_dd, run_tb, gr.State(False), selected_runs_from_url],
        outputs=[run_cb, run_tb],
        show_progress="hidden",
        queue=False,
        api_name=False,
    ).then(
        fn=update_x_axis_choices,
        inputs=[project_dd, run_cb],
        outputs=x_axis_dd,
        show_progress="hidden",
        queue=False,
        api_name=False,
    ).then(
        fn=utils.generate_embed_code,
        inputs=[project_dd, metric_filter_tb, run_cb],
        outputs=[embed_code],
        show_progress="hidden",
        api_name=False,
        queue=False,
    ).then(
        fns.update_navbar_value,
        inputs=[project_dd],
        outputs=[navbar],
        show_progress="hidden",
        api_name=False,
        queue=False,
    )

    gr.on(
        [run_cb.input],
        fn=update_x_axis_choices,
        inputs=[project_dd, run_cb],
        outputs=x_axis_dd,
        show_progress="hidden",
        queue=False,
        api_name=False,
    )
    gr.on(
        [metric_filter_tb.change, run_cb.change],
        fn=utils.generate_embed_code,
        inputs=[project_dd, metric_filter_tb, run_cb],
        outputs=embed_code,
        show_progress="hidden",
        api_name=False,
        queue=False,
    )

    realtime_cb.change(
        fn=toggle_timer,
        inputs=realtime_cb,
        outputs=timer,
        api_name=False,
        queue=False,
    )
    run_cb.input(
        fn=lambda: True,
        outputs=user_interacted_with_run_cb,
        api_name=False,
        queue=False,
    )
    run_tb.input(
        fn=filter_runs,
        inputs=[project_dd, run_tb],
        outputs=run_cb,
        api_name=False,
        queue=False,
    )

    gr.api(
        fn=upload_db_to_space,
        api_name="upload_db_to_space",
    )
    gr.api(
        fn=bulk_upload_media,
        api_name="bulk_upload_media",
    )
    gr.api(
        fn=log,
        api_name="log",
    )
    gr.api(
        fn=bulk_log,
        api_name="bulk_log",
    )

    x_lim = gr.State(None)
    last_steps = gr.State({})

    def update_x_lim(select_data: gr.SelectData):
        return select_data.index

    def update_last_steps(project):
        """Check the last step for each run to detect when new data is available."""
        if not project:
            return {}
        return SQLiteStorage.get_max_steps_for_runs(project)

    timer.tick(
        fn=update_last_steps,
        inputs=[project_dd],
        outputs=last_steps,
        show_progress="hidden",
        api_name=False,
    )

    @gr.render(
        triggers=[
            demo.load,
            run_cb.change,
            last_steps.change,
            smoothing_slider.change,
            x_lim.change,
            x_axis_dd.change,
            log_scale_cb.change,
            metric_filter_tb.change,
        ],
        inputs=[
            project_dd,
            run_cb,
            smoothing_slider,
            metrics_subset,
            x_lim,
            x_axis_dd,
            log_scale_cb,
            metric_filter_tb,
        ],
        show_progress="hidden",
        queue=False,
    )
    def update_dashboard(
        project,
        runs,
        smoothing_granularity,
        metrics_subset,
        x_lim_value,
        x_axis,
        log_scale,
        metric_filter,
    ):
        dfs = []
        images_by_run = {}
        original_runs = runs.copy()

        for run in runs:
            df, images_by_key = load_run_data(
                project, run, smoothing_granularity, x_axis, log_scale
            )
            if df is not None:
                dfs.append(df)
                images_by_run[run] = images_by_key

        if dfs:
            if smoothing_granularity > 0:
                original_dfs = []
                smoothed_dfs = []
                for df in dfs:
                    original_data = df[df["data_type"] == "original"]
                    smoothed_data = df[df["data_type"] == "smoothed"]
                    if not original_data.empty:
                        original_dfs.append(original_data)
                    if not smoothed_data.empty:
                        smoothed_dfs.append(smoothed_data)

                all_dfs = original_dfs + smoothed_dfs
                master_df = (
                    pd.concat(all_dfs, ignore_index=True) if all_dfs else pd.DataFrame()
                )

            else:
                master_df = pd.concat(dfs, ignore_index=True)
        else:
            master_df = pd.DataFrame()

        if master_df.empty:
            return

        x_column = "step"
        if dfs and not dfs[0].empty and "x_axis" in dfs[0].columns:
            x_column = dfs[0]["x_axis"].iloc[0]

        numeric_cols = master_df.select_dtypes(include="number").columns
        numeric_cols = [c for c in numeric_cols if c not in utils.RESERVED_KEYS]
        if x_column and x_column in numeric_cols:
            numeric_cols.remove(x_column)

        if metrics_subset:
            numeric_cols = [c for c in numeric_cols if c in metrics_subset]

        if metric_filter and metric_filter.strip():
            numeric_cols = filter_metrics_by_regex(list(numeric_cols), metric_filter)

        nested_metric_groups = utils.group_metrics_with_subprefixes(list(numeric_cols))
        color_map = utils.get_color_mapping(original_runs, smoothing_granularity > 0)

        metric_idx = 0
        for group_name in sorted(nested_metric_groups.keys()):
            group_data = nested_metric_groups[group_name]

            total_plot_count = sum(
                1
                for m in group_data["direct_metrics"]
                if not master_df.dropna(subset=[m]).empty
            ) + sum(
                sum(1 for m in metrics if not master_df.dropna(subset=[m]).empty)
                for metrics in group_data["subgroups"].values()
            )
            group_label = (
                f"{group_name} ({total_plot_count})"
                if total_plot_count > 0
                else group_name
            )

            with gr.Accordion(
                label=group_label,
                open=True,
                key=f"accordion-{group_name}",
                preserved_by_key=["value", "open"],
            ):
                if group_data["direct_metrics"]:
                    with gr.Draggable(
                        key=f"row-{group_name}-direct", orientation="row"
                    ):
                        for metric_name in group_data["direct_metrics"]:
                            metric_df = master_df.dropna(subset=[metric_name])
                            color = "run" if "run" in metric_df.columns else None
                            if not metric_df.empty:
                                plot = gr.LinePlot(
                                    utils.downsample(
                                        metric_df,
                                        x_column,
                                        metric_name,
                                        color,
                                        x_lim_value,
                                    ),
                                    x=x_column,
                                    y=metric_name,
                                    y_title=metric_name.split("/")[-1],
                                    color=color,
                                    color_map=color_map,
                                    title=metric_name,
                                    key=f"plot-{metric_idx}",
                                    preserved_by_key=None,
                                    x_lim=x_lim_value,
                                    show_fullscreen_button=True,
                                    min_width=400,
                                )
                                plot.select(
                                    update_x_lim,
                                    outputs=x_lim,
                                    key=f"select-{metric_idx}",
                                )
                                plot.double_click(
                                    lambda: None,
                                    outputs=x_lim,
                                    key=f"double-{metric_idx}",
                                )
                            metric_idx += 1

                if group_data["subgroups"]:
                    for subgroup_name in sorted(group_data["subgroups"].keys()):
                        subgroup_metrics = group_data["subgroups"][subgroup_name]

                        subgroup_plot_count = sum(
                            1
                            for m in subgroup_metrics
                            if not master_df.dropna(subset=[m]).empty
                        )
                        subgroup_label = (
                            f"{subgroup_name} ({subgroup_plot_count})"
                            if subgroup_plot_count > 0
                            else subgroup_name
                        )

                        with gr.Accordion(
                            label=subgroup_label,
                            open=True,
                            key=f"accordion-{group_name}-{subgroup_name}",
                            preserved_by_key=["value", "open"],
                        ):
                            with gr.Draggable(key=f"row-{group_name}-{subgroup_name}"):
                                for metric_name in subgroup_metrics:
                                    metric_df = master_df.dropna(subset=[metric_name])
                                    color = (
                                        "run" if "run" in metric_df.columns else None
                                    )
                                    if not metric_df.empty:
                                        plot = gr.LinePlot(
                                            utils.downsample(
                                                metric_df,
                                                x_column,
                                                metric_name,
                                                color,
                                                x_lim_value,
                                            ),
                                            x=x_column,
                                            y=metric_name,
                                            y_title=metric_name.split("/")[-1],
                                            color=color,
                                            color_map=color_map,
                                            title=metric_name,
                                            key=f"plot-{metric_idx}",
                                            preserved_by_key=None,
                                            x_lim=x_lim_value,
                                            show_fullscreen_button=True,
                                            min_width=400,
                                        )
                                        plot.select(
                                            update_x_lim,
                                            outputs=x_lim,
                                            key=f"select-{metric_idx}",
                                        )
                                        plot.double_click(
                                            lambda: None,
                                            outputs=x_lim,
                                            key=f"double-{metric_idx}",
                                        )
                                    metric_idx += 1
        if images_by_run and any(any(images) for images in images_by_run.values()):
            create_media_section(images_by_run)

        table_cols = master_df.select_dtypes(include="object").columns
        table_cols = [c for c in table_cols if c not in utils.RESERVED_KEYS]
        if metrics_subset:
            table_cols = [c for c in table_cols if c in metrics_subset]
        if metric_filter and metric_filter.strip():
            table_cols = filter_metrics_by_regex(list(table_cols), metric_filter)

        actual_table_count = sum(
            1
            for metric_name in table_cols
            if not (metric_df := master_df.dropna(subset=[metric_name])).empty
            and isinstance(value := metric_df[metric_name].iloc[-1], dict)
            and value.get("_type") == Table.TYPE
        )

        if actual_table_count > 0:
            with gr.Accordion(f"tables ({actual_table_count})", open=True):
                with gr.Row(key="row"):
                    for metric_idx, metric_name in enumerate(table_cols):
                        metric_df = master_df.dropna(subset=[metric_name])
                        if not metric_df.empty:
                            value = metric_df[metric_name].iloc[-1]
                            if (
                                isinstance(value, dict)
                                and "_type" in value
                                and value["_type"] == Table.TYPE
                            ):
                                try:
                                    df = pd.DataFrame(value["_value"])
                                    gr.DataFrame(
                                        df,
                                        label=f"{metric_name} (latest)",
                                        key=f"table-{metric_idx}",
                                        wrap=True,
                                    )
                                except Exception as e:
                                    gr.Warning(
                                        f"Column {metric_name} failed to render as a table: {e}"
                                    )


with demo.route("Runs", show_in_navbar=False):
    run_page.render()
with demo.route("Run", show_in_navbar=False):
    run_detail_page.render()

if __name__ == "__main__":
    demo.launch(allowed_paths=[utils.TRACKIO_LOGO_DIR], show_api=False, show_error=True)