File size: 9,667 Bytes
b83f48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
from typing import Any

import gradio as gr
import pandas as pd

try:
    from trackio.sqlite_storage import SQLiteStorage
    from trackio.utils import RESERVED_KEYS, TRACKIO_LOGO_PATH
except:  # noqa: E722
    from sqlite_storage import SQLiteStorage
    from utils import RESERVED_KEYS, TRACKIO_LOGO_PATH

css = """
#run-cb .wrap {
    gap: 2px;
}
#run-cb .wrap label {
    line-height: 1;
    padding: 6px;
}
"""

COLOR_PALETTE = [
    "#3B82F6",
    "#EF4444",
    "#10B981",
    "#F59E0B",
    "#8B5CF6",
    "#EC4899",
    "#06B6D4",
    "#84CC16",
    "#F97316",
    "#6366F1",
]


def get_color_mapping(runs: list[str], smoothing: bool) -> dict[str, str]:
    """Generate color mapping for runs, with transparency for original data when smoothing is enabled."""
    color_map = {}

    for i, run in enumerate(runs):
        base_color = COLOR_PALETTE[i % len(COLOR_PALETTE)]

        if smoothing:
            color_map[f"{run}_smoothed"] = base_color
            color_map[f"{run}_original"] = base_color + "4D"
        else:
            color_map[run] = base_color

    return color_map


def get_projects(request: gr.Request):
    dataset_id = os.environ.get("TRACKIO_DATASET_ID")
    projects = SQLiteStorage.get_projects()
    if project := request.query_params.get("project"):
        interactive = False
    else:
        interactive = True
        project = projects[0] if projects else None
    return gr.Dropdown(
        label="Project",
        choices=projects,
        value=project,
        allow_custom_value=True,
        interactive=interactive,
        info=f"&#x21bb; Synced to <a href='https://huggingface.co/{dataset_id}' target='_blank'>{dataset_id}</a> every 5 min"
        if dataset_id
        else None,
    )


def get_runs(project):
    if not project:
        return []
    return SQLiteStorage.get_runs(project)


def load_run_data(project: str | None, run: str | None, smoothing: bool):
    if not project or not run:
        return None
    metrics = SQLiteStorage.get_metrics(project, run)
    if not metrics:
        return None
    df = pd.DataFrame(metrics)

    if "step" not in df.columns:
        df["step"] = range(len(df))

    if smoothing:
        numeric_cols = df.select_dtypes(include="number").columns
        numeric_cols = [c for c in numeric_cols if c not in RESERVED_KEYS]

        df_original = df.copy()
        df_original["run"] = f"{run}_original"
        df_original["data_type"] = "original"

        df_smoothed = df.copy()
        df_smoothed[numeric_cols] = df_smoothed[numeric_cols].ewm(alpha=0.1).mean()
        df_smoothed["run"] = f"{run}_smoothed"
        df_smoothed["data_type"] = "smoothed"

        combined_df = pd.concat([df_original, df_smoothed], ignore_index=True)
        return combined_df
    else:
        df["run"] = run
        df["data_type"] = "original"
        return df


def update_runs(project, filter_text, user_interacted_with_runs=False):
    if project is None:
        runs = []
        num_runs = 0
    else:
        runs = get_runs(project)
        num_runs = len(runs)
        if filter_text:
            runs = [r for r in runs if filter_text in r]
    if not user_interacted_with_runs:
        return gr.CheckboxGroup(
            choices=runs, value=[runs[0]] if runs else []
        ), gr.Textbox(label=f"Runs ({num_runs})")
    else:
        return gr.CheckboxGroup(choices=runs), gr.Textbox(label=f"Runs ({num_runs})")


def filter_runs(project, filter_text):
    runs = get_runs(project)
    runs = [r for r in runs if filter_text in r]
    return gr.CheckboxGroup(choices=runs, value=runs)


def toggle_timer(cb_value):
    if cb_value:
        return gr.Timer(active=True)
    else:
        return gr.Timer(active=False)


def log(project: str, run: str, metrics: dict[str, Any], dataset_id: str) -> None:
    # Note: the type hint for dataset_id should be str | None but gr.api
    # doesn't support that, see: https://github.com/gradio-app/gradio/issues/11175#issuecomment-2920203317
    storage = SQLiteStorage(project, run, {}, dataset_id=dataset_id)
    storage.log(metrics)


def sort_metrics_by_prefix(metrics: list[str]) -> list[str]:
    """
    Sort metrics by grouping prefixes together.
    Metrics without prefixes come first, then grouped by prefix.

    Example:
    Input: ["train/loss", "loss", "train/acc", "val/loss"]
    Output: ["loss", "train/acc", "train/loss", "val/loss"]
    """
    no_prefix = []
    with_prefix = []

    for metric in metrics:
        if "/" in metric:
            with_prefix.append(metric)
        else:
            no_prefix.append(metric)

    no_prefix.sort()

    prefix_groups = {}
    for metric in with_prefix:
        prefix = metric.split("/")[0]
        if prefix not in prefix_groups:
            prefix_groups[prefix] = []
        prefix_groups[prefix].append(metric)

    sorted_with_prefix = []
    for prefix in sorted(prefix_groups.keys()):
        sorted_with_prefix.extend(sorted(prefix_groups[prefix]))

    return no_prefix + sorted_with_prefix


def configure(request: gr.Request):
    if metrics := request.query_params.get("metrics"):
        return metrics.split(",")
    else:
        return []


with gr.Blocks(theme="citrus", title="Trackio Dashboard", css=css) as demo:
    with gr.Sidebar() as sidebar:
        gr.Markdown(
            f"<div style='display: flex; align-items: center; gap: 8px;'><img src='/gradio_api/file={TRACKIO_LOGO_PATH}' width='32' height='32'><span style='font-size: 2em; font-weight: bold;'>Trackio</span></div>"
        )
        project_dd = gr.Dropdown(label="Project")
        run_tb = gr.Textbox(label="Runs", placeholder="Type to filter...")
        run_cb = gr.CheckboxGroup(
            label="Runs", choices=[], interactive=True, elem_id="run-cb"
        )

    with gr.Sidebar(position="right", open=False) as settings_sidebar:
        gr.Markdown("### ⚙️ Settings")
        realtime_cb = gr.Checkbox(label="Refresh realtime", value=True)
        smoothing_cb = gr.Checkbox(label="Smoothing", value=True)

    timer = gr.Timer(value=1)
    metrics_subset = gr.State([])
    user_interacted_with_run_cb = gr.State(False)

    gr.on(
        [demo.load],
        fn=configure,
        outputs=metrics_subset,
    )
    gr.on(
        [demo.load],
        fn=get_projects,
        outputs=project_dd,
        show_progress="hidden",
    )
    gr.on(
        [timer.tick],
        fn=update_runs,
        inputs=[project_dd, run_tb, user_interacted_with_run_cb],
        outputs=[run_cb, run_tb],
        show_progress="hidden",
    )
    gr.on(
        [demo.load, project_dd.change],
        fn=update_runs,
        inputs=[project_dd, run_tb],
        outputs=[run_cb, run_tb],
        show_progress="hidden",
    )

    realtime_cb.change(
        fn=toggle_timer,
        inputs=realtime_cb,
        outputs=timer,
        api_name="toggle_timer",
    )
    run_cb.input(
        fn=lambda: True,
        outputs=user_interacted_with_run_cb,
    )
    run_tb.input(
        fn=filter_runs,
        inputs=[project_dd, run_tb],
        outputs=run_cb,
    )

    gr.api(
        fn=log,
        api_name="log",
    )

    x_lim = gr.State(None)

    def update_x_lim(select_data: gr.SelectData):
        return select_data.index

    @gr.render(
        triggers=[
            demo.load,
            run_cb.change,
            timer.tick,
            smoothing_cb.change,
            x_lim.change,
        ],
        inputs=[project_dd, run_cb, smoothing_cb, metrics_subset, x_lim],
    )
    def update_dashboard(project, runs, smoothing, metrics_subset, x_lim_value):
        dfs = []
        original_runs = runs.copy()

        for run in runs:
            df = load_run_data(project, run, smoothing)
            if df is not None:
                dfs.append(df)

        if dfs:
            master_df = pd.concat(dfs, ignore_index=True)
        else:
            master_df = pd.DataFrame()

        if master_df.empty:
            return

        numeric_cols = master_df.select_dtypes(include="number").columns
        numeric_cols = [
            c for c in numeric_cols if c not in RESERVED_KEYS and c != "step"
        ]
        if metrics_subset:
            numeric_cols = [c for c in numeric_cols if c in metrics_subset]

        numeric_cols = sort_metrics_by_prefix(list(numeric_cols))
        color_map = get_color_mapping(original_runs, smoothing)

        with gr.Row(key="row"):
            for metric_idx, metric_name in enumerate(numeric_cols):
                metric_df = master_df.dropna(subset=[metric_name])
                if not metric_df.empty:
                    plot = gr.LinePlot(
                        metric_df,
                        x="step",
                        y=metric_name,
                        color="run" if "run" in metric_df.columns else None,
                        color_map=color_map,
                        title=metric_name,
                        key=f"plot-{metric_idx}",
                        preserved_by_key=None,
                        x_lim=x_lim_value,
                        y_lim=[
                            metric_df[metric_name].min(),
                            metric_df[metric_name].max(),
                        ],
                        show_fullscreen_button=True,
                        min_width=400,
                    )
                plot.select(update_x_lim, outputs=x_lim, key=f"select-{metric_idx}")
                plot.double_click(
                    lambda: None, outputs=x_lim, key=f"double-{metric_idx}"
                )


if __name__ == "__main__":
    demo.launch(allowed_paths=[TRACKIO_LOGO_PATH], show_api=False)