Spaces:
Running
Running
File size: 9,667 Bytes
b83f48f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import os
from typing import Any
import gradio as gr
import pandas as pd
try:
from trackio.sqlite_storage import SQLiteStorage
from trackio.utils import RESERVED_KEYS, TRACKIO_LOGO_PATH
except: # noqa: E722
from sqlite_storage import SQLiteStorage
from utils import RESERVED_KEYS, TRACKIO_LOGO_PATH
css = """
#run-cb .wrap {
gap: 2px;
}
#run-cb .wrap label {
line-height: 1;
padding: 6px;
}
"""
COLOR_PALETTE = [
"#3B82F6",
"#EF4444",
"#10B981",
"#F59E0B",
"#8B5CF6",
"#EC4899",
"#06B6D4",
"#84CC16",
"#F97316",
"#6366F1",
]
def get_color_mapping(runs: list[str], smoothing: bool) -> dict[str, str]:
"""Generate color mapping for runs, with transparency for original data when smoothing is enabled."""
color_map = {}
for i, run in enumerate(runs):
base_color = COLOR_PALETTE[i % len(COLOR_PALETTE)]
if smoothing:
color_map[f"{run}_smoothed"] = base_color
color_map[f"{run}_original"] = base_color + "4D"
else:
color_map[run] = base_color
return color_map
def get_projects(request: gr.Request):
dataset_id = os.environ.get("TRACKIO_DATASET_ID")
projects = SQLiteStorage.get_projects()
if project := request.query_params.get("project"):
interactive = False
else:
interactive = True
project = projects[0] if projects else None
return gr.Dropdown(
label="Project",
choices=projects,
value=project,
allow_custom_value=True,
interactive=interactive,
info=f"↻ Synced to <a href='https://huggingface.co/{dataset_id}' target='_blank'>{dataset_id}</a> every 5 min"
if dataset_id
else None,
)
def get_runs(project):
if not project:
return []
return SQLiteStorage.get_runs(project)
def load_run_data(project: str | None, run: str | None, smoothing: bool):
if not project or not run:
return None
metrics = SQLiteStorage.get_metrics(project, run)
if not metrics:
return None
df = pd.DataFrame(metrics)
if "step" not in df.columns:
df["step"] = range(len(df))
if smoothing:
numeric_cols = df.select_dtypes(include="number").columns
numeric_cols = [c for c in numeric_cols if c not in RESERVED_KEYS]
df_original = df.copy()
df_original["run"] = f"{run}_original"
df_original["data_type"] = "original"
df_smoothed = df.copy()
df_smoothed[numeric_cols] = df_smoothed[numeric_cols].ewm(alpha=0.1).mean()
df_smoothed["run"] = f"{run}_smoothed"
df_smoothed["data_type"] = "smoothed"
combined_df = pd.concat([df_original, df_smoothed], ignore_index=True)
return combined_df
else:
df["run"] = run
df["data_type"] = "original"
return df
def update_runs(project, filter_text, user_interacted_with_runs=False):
if project is None:
runs = []
num_runs = 0
else:
runs = get_runs(project)
num_runs = len(runs)
if filter_text:
runs = [r for r in runs if filter_text in r]
if not user_interacted_with_runs:
return gr.CheckboxGroup(
choices=runs, value=[runs[0]] if runs else []
), gr.Textbox(label=f"Runs ({num_runs})")
else:
return gr.CheckboxGroup(choices=runs), gr.Textbox(label=f"Runs ({num_runs})")
def filter_runs(project, filter_text):
runs = get_runs(project)
runs = [r for r in runs if filter_text in r]
return gr.CheckboxGroup(choices=runs, value=runs)
def toggle_timer(cb_value):
if cb_value:
return gr.Timer(active=True)
else:
return gr.Timer(active=False)
def log(project: str, run: str, metrics: dict[str, Any], dataset_id: str) -> None:
# Note: the type hint for dataset_id should be str | None but gr.api
# doesn't support that, see: https://github.com/gradio-app/gradio/issues/11175#issuecomment-2920203317
storage = SQLiteStorage(project, run, {}, dataset_id=dataset_id)
storage.log(metrics)
def sort_metrics_by_prefix(metrics: list[str]) -> list[str]:
"""
Sort metrics by grouping prefixes together.
Metrics without prefixes come first, then grouped by prefix.
Example:
Input: ["train/loss", "loss", "train/acc", "val/loss"]
Output: ["loss", "train/acc", "train/loss", "val/loss"]
"""
no_prefix = []
with_prefix = []
for metric in metrics:
if "/" in metric:
with_prefix.append(metric)
else:
no_prefix.append(metric)
no_prefix.sort()
prefix_groups = {}
for metric in with_prefix:
prefix = metric.split("/")[0]
if prefix not in prefix_groups:
prefix_groups[prefix] = []
prefix_groups[prefix].append(metric)
sorted_with_prefix = []
for prefix in sorted(prefix_groups.keys()):
sorted_with_prefix.extend(sorted(prefix_groups[prefix]))
return no_prefix + sorted_with_prefix
def configure(request: gr.Request):
if metrics := request.query_params.get("metrics"):
return metrics.split(",")
else:
return []
with gr.Blocks(theme="citrus", title="Trackio Dashboard", css=css) as demo:
with gr.Sidebar() as sidebar:
gr.Markdown(
f"<div style='display: flex; align-items: center; gap: 8px;'><img src='/gradio_api/file={TRACKIO_LOGO_PATH}' width='32' height='32'><span style='font-size: 2em; font-weight: bold;'>Trackio</span></div>"
)
project_dd = gr.Dropdown(label="Project")
run_tb = gr.Textbox(label="Runs", placeholder="Type to filter...")
run_cb = gr.CheckboxGroup(
label="Runs", choices=[], interactive=True, elem_id="run-cb"
)
with gr.Sidebar(position="right", open=False) as settings_sidebar:
gr.Markdown("### ⚙️ Settings")
realtime_cb = gr.Checkbox(label="Refresh realtime", value=True)
smoothing_cb = gr.Checkbox(label="Smoothing", value=True)
timer = gr.Timer(value=1)
metrics_subset = gr.State([])
user_interacted_with_run_cb = gr.State(False)
gr.on(
[demo.load],
fn=configure,
outputs=metrics_subset,
)
gr.on(
[demo.load],
fn=get_projects,
outputs=project_dd,
show_progress="hidden",
)
gr.on(
[timer.tick],
fn=update_runs,
inputs=[project_dd, run_tb, user_interacted_with_run_cb],
outputs=[run_cb, run_tb],
show_progress="hidden",
)
gr.on(
[demo.load, project_dd.change],
fn=update_runs,
inputs=[project_dd, run_tb],
outputs=[run_cb, run_tb],
show_progress="hidden",
)
realtime_cb.change(
fn=toggle_timer,
inputs=realtime_cb,
outputs=timer,
api_name="toggle_timer",
)
run_cb.input(
fn=lambda: True,
outputs=user_interacted_with_run_cb,
)
run_tb.input(
fn=filter_runs,
inputs=[project_dd, run_tb],
outputs=run_cb,
)
gr.api(
fn=log,
api_name="log",
)
x_lim = gr.State(None)
def update_x_lim(select_data: gr.SelectData):
return select_data.index
@gr.render(
triggers=[
demo.load,
run_cb.change,
timer.tick,
smoothing_cb.change,
x_lim.change,
],
inputs=[project_dd, run_cb, smoothing_cb, metrics_subset, x_lim],
)
def update_dashboard(project, runs, smoothing, metrics_subset, x_lim_value):
dfs = []
original_runs = runs.copy()
for run in runs:
df = load_run_data(project, run, smoothing)
if df is not None:
dfs.append(df)
if dfs:
master_df = pd.concat(dfs, ignore_index=True)
else:
master_df = pd.DataFrame()
if master_df.empty:
return
numeric_cols = master_df.select_dtypes(include="number").columns
numeric_cols = [
c for c in numeric_cols if c not in RESERVED_KEYS and c != "step"
]
if metrics_subset:
numeric_cols = [c for c in numeric_cols if c in metrics_subset]
numeric_cols = sort_metrics_by_prefix(list(numeric_cols))
color_map = get_color_mapping(original_runs, smoothing)
with gr.Row(key="row"):
for metric_idx, metric_name in enumerate(numeric_cols):
metric_df = master_df.dropna(subset=[metric_name])
if not metric_df.empty:
plot = gr.LinePlot(
metric_df,
x="step",
y=metric_name,
color="run" if "run" in metric_df.columns else None,
color_map=color_map,
title=metric_name,
key=f"plot-{metric_idx}",
preserved_by_key=None,
x_lim=x_lim_value,
y_lim=[
metric_df[metric_name].min(),
metric_df[metric_name].max(),
],
show_fullscreen_button=True,
min_width=400,
)
plot.select(update_x_lim, outputs=x_lim, key=f"select-{metric_idx}")
plot.double_click(
lambda: None, outputs=x_lim, key=f"double-{metric_idx}"
)
if __name__ == "__main__":
demo.launch(allowed_paths=[TRACKIO_LOGO_PATH], show_api=False)
|