Spaces:
Sleeping
Sleeping
File size: 1,468 Bytes
03991d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from fastapi import FastAPI, Request
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from g4f.client import Client
from fastapi.responses import StreamingResponse
# Initialize the AI client
client = Client()
# FastAPI app
app = FastAPI()
# CORS Middleware (so JS from browser can access it too)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Change "*" to your frontend URL for better security
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request body model
class Question(BaseModel):
question: str
async def generate_response_chunks(prompt: str):
try:
response = client.chat.completions.create(
model="gpt-4", # Use a supported model
messages=[
{"role": "user", "content": prompt},
{"role": "system", "content": "You are a helpful AI assistant created by abdullah ali who is very intelegent and he is 13 years old and live in lahore."}
],
stream=True # Enable streaming
)
for part in response:
content = part.choices[0].delta.content
if content:
yield content
except Exception as e:
yield f"Error occurred: {e}"
@app.post("/ask")
async def ask(question: Question):
return StreamingResponse(
generate_response_chunks(question.question),
media_type="text/plain"
) |