File size: 5,390 Bytes
f7c0abb
984a117
e7b1f60
fa8e2ce
256ed7f
984a117
f7c0abb
05d6121
f9d8346
984a117
e7b1f60
256ed7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b1f60
 
984a117
256ed7f
465b43c
984a117
 
fa8e2ce
6025f1c
 
256ed7f
e7b1f60
984a117
6025f1c
984a117
 
 
 
f7c0abb
984a117
 
 
 
 
 
 
f7c0abb
984a117
 
 
 
 
 
 
 
 
 
 
 
 
 
f7c0abb
984a117
05d6121
e7b1f60
984a117
 
 
e7b1f60
05d6121
b9e465f
984a117
256ed7f
 
fa8e2ce
256ed7f
93c4b1f
7a83ce6
20d0b59
984a117
256ed7f
984a117
256ed7f
 
 
984a117
256ed7f
387e225
256ed7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import httpx
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from collections import defaultdict
from typing import AsyncGenerator

app = FastAPI()

# Model list (unchanged)
AVAILABLE_MODELS = {
    "openai/gpt-4.1": "OpenAI GPT-4.1",
    "openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini",
    "openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano",
    "openai/gpt-4o": "OpenAI GPT-4o",
    "openai/gpt-4o-mini": "OpenAI GPT-4o mini",
    "openai/o4-mini": "OpenAI o4-mini",
    "microsoft/MAI-DS-R1": "MAI-DS-R1",
    "microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)",
    "microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)",
    "microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)",
    "microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)",
    "microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)",
    "microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)",
    "microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)",
    "microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)",
    "microsoft/Phi-4": "Phi-4",
    "microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct",
    "microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct",
    "ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large",
    "ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini",
    "mistral-ai/Codestral-2501": "Codestral 25.01",
    "cohere/Cohere-command-r": "Cohere Command R",
    "cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024",
    "cohere/Cohere-command-r-plus": "Cohere Command R+",
    "cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024",
    "deepseek/DeepSeek-R1": "DeepSeek-R1",
    "deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324",
    "meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
    "meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
    "meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
    "meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8",
    "meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct",
    "meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
    "meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
    "meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
    "meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct",
    "meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
    "mistral-ai/Ministral-3B": "Ministral 3B",
    "mistral-ai/Mistral-Large-2411": "Mistral Large 24.11",
    "mistral-ai/Mistral-Nemo": "Mistral Nemo",
    "mistral-ai/Mistral-large-2407": "Mistral Large (2407)",
    "mistral-ai/Mistral-small": "Mistral Small",
    "cohere/cohere-command-a": "Cohere Command A",
    "core42/jais-30b-chat": "JAIS 30b Chat",
    "mistral-ai/mistral-small-2503": "Mistral Small 3.1"
}

# In-memory history
chat_histories = defaultdict(list)

# Async generator for AI response
async def generate_ai_response(chat_id: str, model: str) -> AsyncGenerator[str, None]:
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        raise HTTPException(status_code=500, detail="GitHub token not configured")

    if model not in AVAILABLE_MODELS:
        raise HTTPException(status_code=400, detail=f"Invalid model. Choose from: {', '.join(AVAILABLE_MODELS.keys())}")

    headers = {
        "Authorization": f"Bearer {token}",
        "Content-Type": "application/json"
    }

    payload = {
        "model": model,
        "messages": chat_histories[chat_id],
        "stream": True,
        "temperature": 1.0,
        "top_p": 1.0
    }

    async with httpx.AsyncClient(timeout=60.0) as client:
        try:
            async with client.stream("POST", "https://models.github.ai/inference", headers=headers, json=payload) as response:
                async for line in response.aiter_lines():
                    if line.startswith("data:"):
                        data = line[len("data:"):].strip()
                        if data == "[DONE]":
                            break
                        if data:
                            yield f"{data}\n"
                            # Optionally: append to chat history
                            chat_histories[chat_id].append({"role": "assistant", "content": data})
        except Exception as e:
            yield f"Error: {str(e)}"

# Generate response endpoint
@app.post("/generate")
async def generate_response(
    chat_id: str = Query(..., description="Chat session ID"),
    prompt: str = Query(..., description="User input message"),
    model: str = Query("openai/gpt-4.1-mini", description="Model to use")
):
    if not prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    
    chat_histories[chat_id].append({"role": "user", "content": prompt})

    return StreamingResponse(
        generate_ai_response(chat_id, model),
        media_type="text/event-stream"
    )

# Reset chat history endpoint
@app.post("/reset")
async def reset_chat(chat_id: str = Query(...)):
    if chat_id in chat_histories:
        chat_histories[chat_id].clear()
        return {"message": f"Chat {chat_id} history reset."}
    raise HTTPException(status_code=404, detail="Chat ID not found")

def get_app():
    return app