Spaces:
Sleeping
Sleeping
File size: 45,242 Bytes
9c68b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 |
import re
import json
import requests
import traceback
import time
import os
import asyncio
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
# Updated imports for pydantic
from pydantic import BaseModel, Field
# Updated imports for LangChain
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_ollama import OllamaLLM
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
# Enhanced HuggingFace imports for improved functionality
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
# FastAPI and async HTTP client imports
from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
import aiohttp
import httpx
from starlette.requests import Request
from starlette.responses import Response
# Import endpoints documentation
from endpoints_documentation import endpoints_documentation
# Set environment variables for HuggingFace
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
# Global thread pool for CPU-bound operations
thread_pool = ThreadPoolExecutor(max_workers=4)
# Global HTTP client session for async requests
http_client = None
# Rate limiting settings
RATE_LIMIT_PER_MINUTE = 60
rate_limit_counter = 0
rate_limit_reset_time = time.time()
class ChatMessage(BaseModel):
"""Data model for chat messages"""
message_id: str = Field(..., description="Unique identifier for the message")
user_id: str = Field(..., description="User identifier")
message: str = Field(..., description="The user's message")
timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
language: str = Field(default="english", description="Detected language of the message")
class ChatResponse(BaseModel):
"""Data model for chatbot responses"""
response_id: str = Field(..., description="Unique identifier for the response")
response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
message: str = Field(..., description="The chatbot's response message")
api_call_made: bool = Field(default=False, description="Whether an API call was made")
api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
language: str = Field(default="english", description="Language of the response")
timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")
class RouterResponse(BaseModel):
"""Data model for router chain response"""
intent: str = Field(..., description="Either 'API_ACTION' or 'CONVERSATION'")
confidence: float = Field(..., description="Confidence score between 0.0 and 1.0")
reasoning: str = Field(..., description="Explanation of the decision")
endpoint: Optional[str] = Field(default=None, description="API endpoint if intent is API_ACTION")
method: Optional[str] = Field(default=None, description="HTTP method if intent is API_ACTION")
params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for API call")
missing_required: List[str] = Field(default_factory=list, description="Missing required parameters")
class HealthcareChatbot:
def __init__(self):
self.endpoints_documentation = endpoints_documentation
self.ollama_base_url = "http://localhost:11434"
self.model_name = "gemma3"
self.BASE_URL = 'https://8ac0-197-54-54-66.ngrok-free.app'
self.headers = {'Content-type': 'application/json'}
self.user_id = '9e889485-3db4-4f70-a7a2-e219beae6578'
self.max_retries = 3
self.retry_delay = 2
# Store conversation history with user-specific sessions
self.conversation_sessions = {}
self.max_history_length = 10
# Initialize components
self._initialize_language_tools()
self._initialize_llm()
self._initialize_parsers_and_chains()
self._initialize_date_parser()
# Initialize async HTTP client
self._initialize_http_client()
print("Healthcare Chatbot initialized successfully!")
self._print_welcome_message()
def _initialize_http_client(self):
"""Initialize async HTTP client with connection pooling"""
global http_client
if http_client is None:
http_client = httpx.AsyncClient(
timeout=30.0,
limits=httpx.Limits(max_keepalive_connections=100, max_connections=1000),
transport=httpx.AsyncHTTPTransport(retries=3)
)
async def _close_http_client(self):
"""Close the HTTP client"""
global http_client
if http_client:
await http_client.aclose()
http_client = None
def _get_user_session(self, user_id: str) -> List[Dict]:
"""Get or create user conversation session"""
if user_id not in self.conversation_sessions:
self.conversation_sessions[user_id] = []
return self.conversation_sessions[user_id]
async def _check_rate_limit(self) -> bool:
"""Check and update rate limiting"""
global rate_limit_counter, rate_limit_reset_time
current_time = time.time()
# Reset counter if a minute has passed
if current_time - rate_limit_reset_time >= 60:
rate_limit_counter = 0
rate_limit_reset_time = current_time
# Check if we're over the limit
if rate_limit_counter >= RATE_LIMIT_PER_MINUTE:
return False
rate_limit_counter += 1
return True
def _print_welcome_message(self):
"""Print welcome message in both languages"""
print("\n" + "="*60)
print("🏥 HEALTHCARE CHATBOT READY")
print("="*60)
print("English: Hello! I'm your healthcare assistant. I can help you with:")
print("• Booking and managing appointments")
print("• Finding hospital information")
print("• Viewing your medical records")
print("• General healthcare questions")
print()
print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
print("• حجز وإدارة المواعيد")
print("• العثور على معلومات المستشفى")
print("• عرض سجلاتك الطبية")
print("• الأسئلة الطبية العامة")
print("="*60)
print("Type 'quit' or 'خروج' to exit\n")
def _initialize_language_tools(self):
"""Initialize language processing tools"""
try:
self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
self.language_classifier = pipeline(
"text-classification",
model="papluca/xlm-roberta-base-language-detection",
top_k=1
)
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
)
print("✓ Language processing models loaded successfully")
except Exception as e:
print(f"⚠ Warning: Some language models failed to load: {e}")
self.language_classifier = None
self.sentiment_analyzer = None
def _initialize_date_parser(self):
"""Initialize date parsing model"""
try:
self.date_parser = pipeline(
"token-classification",
model="Jean-Baptiste/roberta-large-ner-english",
aggregation_strategy="simple"
)
except Exception as e:
print(f"⚠ Warning: Date parsing model failed to load: {e}")
self.date_parser = None
def _initialize_llm(self):
"""Initialize the LLM"""
callbacks = [StreamingStdOutCallbackHandler()]
self.llm = OllamaLLM(
model=self.model_name,
base_url=self.ollama_base_url,
callbacks=callbacks,
temperature=0.7,
num_ctx=8192,
top_p=0.9,
request_timeout=60,
)
def _initialize_parsers_and_chains(self):
"""Initialize all prompt templates and chains - REVAMPED to 3 chains only"""
self.json_parser = JsonOutputParser(pydantic_object=RouterResponse)
# UNIFIED ROUTER CHAIN - Handles both intent classification AND API routing
self.router_prompt_template = PromptTemplate(
template="""
You are a routing system. Your job is simple:
1. Understand what the user wants
2. Handle any dates/times in their request with PRECISE calculations
3. Check if any endpoint can do what they want
4. If yes = API_ACTION, if no = CONVERSATION
## Available API Endpoints Documentation
{endpoints_documentation}
## User Query to Analyze
Query: "{user_query}"
Language: {detected_language}
Current Context:
- DateTime: {current_datetime}
- Timezone: {timezone}
- Current Day of Week: {current_day_name}
## Step-by-Step Analysis
**STEP 1: What does the user want?**
- If query is in Arabic, translate it to English first
- Identify the exact action or information the user is requesting
- Focus on understanding their underlying need, not just the words
**STEP 2: Handle Date/Time Processing with PRECISE Calculations**
IMPORTANT: Use the current datetime ({current_datetime}) and timezone ({timezone}) for ALL calculations.
### Current Date Reference Points:
- Today is: {current_datetime}
- Current day of week: {current_day_name}
- Current timezone: {timezone}
### Arabic Date/Time Expressions Processing:
**Basic Relative Dates:**
- "اليوم" (today) = {current_datetime} date portion
- "غدا" (tomorrow) = current date + 1 day
- "أمس" (yesterday) = current date - 1 day
- "بعد غد" (day after tomorrow) = current date + 2 days
**Weekly Expressions - CALCULATE PRECISELY:**
- "الأسبوع القادم" (next week) = current date + 7 days
- "الأسبوع الماضي" (last week) = current date - 7 days
**Specific Weekday Calculations - MOST IMPORTANT:**
For expressions like "يوم [weekday] القادم" (next [weekday]):
1. Identify the target weekday from Arabic names:
- الأحد (Sunday) = 0
- الاثنين (Monday) = 1
- الثلاثاء (Tuesday) = 2
- الأربعاء (Wednesday) = 3
- الخميس (Thursday) = 4
- الجمعة (Friday) = 5
- السبت (Saturday) = 6
2. Calculate days to add:
- Get current weekday number (0=Sunday, 1=Monday, etc.)
- Target weekday number
- If target > current: days_to_add = target - current
- If target <= current: days_to_add = 7 - (current - target)
- Final date = current_date + days_to_add
**Example Calculation:**
If today is Sunday (June 1, 2025) and user says "يوم الاربع القادم" (next Wednesday):
- Current weekday: 0 (Sunday)
- Target weekday: 3 (Wednesday)
- Days to add: 3 - 0 = 3
- Result: June 1 + 3 days = June 4, 2025
**Monthly/Yearly Expressions:**
- "الشهر القادم" (next month) = add 1 month to current date
- "الشهر الماضي" (last month) = subtract 1 month from current date
- "السنة القادمة" (next year) = add 1 year to current date
**Time Expressions:**
- "صباحًا" (morning/AM) = 09:00 if no specific time given
- "مساءً" (evening/PM) = 18:00 if no specific time given
- "ظهرًا" (noon) = 12:00
- "منتصف الليل" (midnight) = 00:00
- "بعد ساعتين" (in 2 hours) = current time + 2 hours
- "قبل ساعة" (1 hour ago) = current time - 1 hour
**Date Format Output:**
- Always convert final calculated date to ISO 8601 format: YYYY-MM-DDTHH:MM:SS
- Include timezone offset if available
- For date-only expressions, use 00:00:00 as default time
**STEP 3: Find matching endpoint**
- Read each endpoint description in the documentation
- Check if any endpoint's purpose can fulfill what the user wants
- Match based on functionality, not keywords
**STEP 4: Decision**
- Found matching endpoint = "API_ACTION"
- No matching endpoint = "CONVERSATION"
**STEP 5: Parameter Extraction (only if API_ACTION)**
- Extract parameter values from user query
- Use the CALCULATED dates/times from Step 2
- Convert all dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
- List any missing required parameters
- **CRITICAL: All parameters must be in English**
- Translate any Arabic text to English
- Convert names to English equivalents (e.g., "دكتور احمد" → "Dr. Ahmed")
- Use standard English terms for all parameters
## Output Format
{{
"intent": "CONVERSATION|API_ACTION",
"confidence": 0.8,
"reasoning": "User wants: [what user actually needs]. Date/time processing: [show exact calculation: current date + X days = final date]. Found endpoint: [endpoint path and why it matches] OR No endpoint matches this need",
"endpoint": "/exact/endpoint/path",
"method": "GET|POST|PUT|DELETE",
"params": {{
// ALL VALUES MUST BE IN ENGLISH
// Arabic terms must be translated to English equivalents
}},
"missing_required": [],
"calculated_datetime": "YYYY-MM-DDTHH:MM:SS (if date/time was processed)"
}}
## CRITICAL REMINDERS:
1. ALWAYS use the provided current_datetime ({current_datetime}) as your base for calculations
2. For "next weekday" expressions, calculate the exact number of days to add
3. Show your calculation work in the reasoning field
4. Double-check weekday numbers: Sunday=0, Monday=1, Tuesday=2, Wednesday=3, Thursday=4, Friday=5, Saturday=6
5. **ALL PARAMETERS MUST BE IN ENGLISH** - translate any Arabic text before output
**FINAL CHECK BEFORE OUTPUTTING:**
🔍 **MANDATORY LANGUAGE CHECK:**
1. Examine every value in the params object
2. If ANY value contains Arabic characters (ا-ي), you MUST:
- Translate it to English
- Convert names to English equivalents
- Replace Arabic terms with English counterparts
3. Only output JSON when ALL parameters are in English
Now analyze the user query step by step and give me the JSON response.
""",
input_variables=["user_query", "detected_language", "extracted_keywords",
"sentiment_analysis", "endpoints_documentation", "current_datetime",
"timezone", "current_day_name"]
)
# CONVERSATION CHAIN - Handles conversational responses
self.conversation_template = PromptTemplate(
template="""
You are a friendly and professional healthcare chatbot assistant.
=== RESPONSE GUIDELINES ===
- Respond ONLY in {detected_language}
- Be helpful, empathetic, and professional
- Keep responses concise but informative
- Use appropriate medical terminology when needed
- Maintain a caring and supportive tone
=== CONTEXT ===
User Message: {user_query}
Language: {detected_language}
Sentiment: {sentiment_analysis}
Conversation History: {conversation_history}
=== LANGUAGE-SPECIFIC INSTRUCTIONS ===
FOR ARABIC RESPONSES:
- Use Modern Standard Arabic (الفصحى)
- Be respectful and formal as appropriate in Arabic culture
- Use proper Arabic medical terminology
- Keep sentences clear and grammatically correct
FOR ENGLISH RESPONSES:
- Use clear, professional English
- Be warm and approachable
- Use appropriate medical terminology
=== RESPONSE RULES ===
1. Address the user's question or comment directly
2. Provide helpful information when possible
3. If you cannot help with something specific, explain what you CAN help with
4. Never provide specific medical advice - always recommend consulting healthcare professionals
5. Be encouraging and supportive
6. Do NOT mix languages in your response
7. End responses naturally without asking multiple questions
Generate a helpful conversational response:""",
input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
)
# API RESPONSE CHAIN - Formats API responses for users
self.api_response_template = PromptTemplate(
template="""
You are a professional healthcare assistant. Generate a natural language response to the user's query using ONLY the provided API data.
User Query: {user_query}
User Sentiment: {sentiment_analysis}
Response Language: {detected_language}
API Response Data:
{api_response}
=== CORE INSTRUCTIONS ===
1. Analyze the API response structure and extract relevant data points
2. Cross-reference with the user's query to determine what information to include
3. Respond in {detected_language} using a warm, conversational tone
4. Convert technical data into natural language appropriate for healthcare communication
=== DATE/TIME HANDLING ===
1. Identify all date/time fields in the API response (look for ISO 8601 format: YYYY-MM-DDTHH:MM:SS)
2. For English responses:
- Format dates as "Month Day, Year at HH:MM AM/PM"
- Convert times to 12-hour format with proper AM/PM
3. For Arabic responses:
- Format dates as "Day Month Year الساعة HH:MM صباحاً/مساءً"
- Use Arabic numerals (٠١٢٣٤٥٦٧٨٩)
- Use Arabic month names
4. Preserve all original date/time values - only change the formatting
=== RESPONSE GUIDELINES ===
1. Use ONLY data present in the API response
2. Maintain a professional yet friendly healthcare tone
3. Adapt to the user's sentiment:
- Positive: reinforce with encouraging language
- Neutral: provide clear, factual information
- Negative: show empathy and offer assistance
4. Structure the response to directly answer the user's query
5. Include relevant details from the API response that address the user's needs
=== CRITICAL RULES ===
1. Never invent or hallucinate information not present in the API response
2. If the API response doesn't contain requested information, say so politely
3. All dates/times must exactly match the API data
4. Maintain strict language consistency (respond only in {detected_language})
5. Format all technical data (IDs, codes, etc.) for easy understanding
Generate a helpful response that addresses the user's query using the API data.
""",
input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
)
# Create the 3 chains
self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
self.api_response_chain = LLMChain(llm=self.llm, prompt=self.api_response_template)
def detect_language(self, text):
"""Detect language of the input text"""
if self.language_classifier and len(text.strip()) > 3:
try:
result = self.language_classifier(text)
detected_lang = result[0][0]['label']
confidence = result[0][0]['score']
if detected_lang in ['ar', 'arabic']:
return "arabic"
elif detected_lang in ['en', 'english']:
return "english"
elif confidence > 0.8:
return "english" # Default to English for unsupported languages
except:
pass
# Fallback: Basic Arabic detection
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
if arabic_pattern.search(text):
return "arabic"
return "english"
def analyze_sentiment(self, text):
"""Analyze sentiment of the text"""
if self.sentiment_analyzer and len(text.strip()) > 3:
try:
result = self.sentiment_analyzer(text)
return {
"sentiment": result[0]['label'],
"score": result[0]['score']
}
except:
pass
return {"sentiment": "NEUTRAL", "score": 0.5}
def extract_keywords(self, text):
"""Extract keywords from text"""
# Simple keyword extraction
words = re.findall(r'\b\w+\b', text.lower())
# Filter out common words and keep meaningful ones
stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
keywords = [w for w in words if len(w) > 3 and w not in stopwords]
return list(set(keywords))[:5] # Return top 5 unique keywords
def get_conversation_context(self, user_id: str) -> str:
"""Get recent conversation history as context"""
history = self._get_user_session(user_id)
if not history:
return "No previous conversation"
context = []
for item in history[-3:]: # Last 3 exchanges
context.append(f"User: {item['user_message']}")
context.append(f"Bot: {item['bot_response'][:100]}...") # Truncate long responses
return " | ".join(context)
def add_to_history(self, user_id: str, user_message: str, bot_response: str, response_type: str):
"""Add exchange to conversation history"""
history = self._get_user_session(user_id)
history.append({
'timestamp': datetime.now(),
'user_message': user_message,
'bot_response': bot_response,
'response_type': response_type
})
# Keep only recent history
if len(history) > self.max_history_length:
self.conversation_sessions[user_id] = history[-self.max_history_length:]
def parse_relative_date(self, text, detected_language):
"""Parse relative dates from text using a combination of methods"""
today = datetime.now()
# Handle common relative date patterns in English and Arabic
tomorrow_patterns = {
'english': [r'\btomorrow\b', r'\bnext day\b'],
'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
}
next_week_patterns = {
'english': [r'\bnext week\b'],
'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
}
# Check for "tomorrow" patterns
for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
if re.search(pattern, text, re.IGNORECASE):
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
# Check for "next week" patterns
for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
if re.search(pattern, text, re.IGNORECASE):
return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')
# If NER model is available, use it to extract date entities
if self.date_parser and detected_language == 'english':
try:
date_entities = self.date_parser(text)
for entity in date_entities:
if entity['entity_group'] == 'DATE':
print(f"Found date entity: {entity['word']}")
# Default to tomorrow if we detect any date
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
except Exception as e:
print(f"Error in date parsing: {e}")
# Default return None if no date pattern is recognized
return None
def parse_router_response(self, router_text):
"""Parse the router chain response into structured data"""
try:
# Clean the response text
cleaned_response = router_text
# Remove any comments (both single-line and multi-line)
cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
# Remove any trailing commas
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
# Try different methods to parse the JSON response
try:
# First attempt: direct JSON parsing of cleaned response
parsed_response = json.loads(cleaned_response)
except json.JSONDecodeError:
try:
# Second attempt: extract JSON from markdown code block
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
if json_match:
parsed_response = json.loads(json_match.group(1))
else:
raise ValueError("No JSON found in code block")
except (json.JSONDecodeError, ValueError):
try:
# Third attempt: find JSON-like content using regex
json_pattern = r'\{\s*"intent"\s*:.*?\}'
json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
if json_match:
json_str = json_match.group(0)
# Additional cleaning for the extracted JSON
json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
parsed_response = json.loads(json_str)
else:
raise ValueError("Could not extract JSON using regex")
except (json.JSONDecodeError, ValueError):
print(f"Failed to parse JSON. Raw response: {router_text}")
print(f"Cleaned response: {cleaned_response}")
# Return default conversation response on parse failure
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": "Failed to parse router response - defaulting to conversation",
"endpoint": None,
"method": None,
"params": {},
"missing_required": []
}
# Validate required fields and set defaults
validated_response = {
"intent": parsed_response.get("intent", "CONVERSATION"),
"confidence": parsed_response.get("confidence", 0.5),
"reasoning": parsed_response.get("reasoning", "Router decision"),
"endpoint": parsed_response.get("endpoint"),
"method": parsed_response.get("method"),
"params": parsed_response.get("params", {}),
"missing_required": parsed_response.get("missing_required", [])
}
return validated_response
except Exception as e:
print(f"Error parsing router response: {e}")
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": f"Parse error: {str(e)}",
"endpoint": None,
"method": None,
"params": {},
"missing_required": []
}
def handle_conversation(self, user_query, detected_language, sentiment_result):
"""Handle conversational responses"""
try:
result = self.conversation_chain.invoke({
"user_query": user_query,
"detected_language": detected_language,
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context(self.user_id)
})
return result["text"].strip()
except Exception as e:
# Fallback response
if detected_language == "arabic":
return "أعتذر، واجهت مشكلة في المعالجة. كيف يمكنني مساعدتك؟"
else:
return "I apologize, I encountered a processing issue. How can I help you?"
async def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Make async API call to backend with retry logic"""
endpoint_url = data.get('endpoint')
endpoint_method = data.get('method')
endpoint_params = data.get('params', {}).copy()
print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
# Inject patient_id if needed
if 'patient_id' in endpoint_params:
endpoint_params['patient_id'] = self.user_id
retries = 0
while retries < self.max_retries:
try:
if endpoint_method.upper() == 'GET':
response = await http_client.get(
self.BASE_URL + endpoint_url,
params=endpoint_params,
headers=self.headers
)
else:
response = await http_client.request(
endpoint_method.upper(),
self.BASE_URL + endpoint_url,
json=endpoint_params,
headers=self.headers
)
response.raise_for_status()
return response.json()
except httpx.HTTPError as e:
retries += 1
if retries >= self.max_retries:
return {
"error": "Backend API call failed after multiple retries",
"details": str(e),
"status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
}
await asyncio.sleep(self.retry_delay)
async def handle_api_action(self, user_query: str, detected_language: str,
sentiment_result: Dict, keywords: List[str],
router_data: Dict) -> Dict[str, Any]:
"""Handle API-based actions using router data"""
try:
# Inject patient_id if needed
if 'patient_id' in router_data['params']:
router_data['params']['patient_id'] = self.user_id
else:
router_data['params']['patient_id'] = self.user_id
print(f"🔍 Final API call data: {router_data}")
# Make backend API call
api_response = await self.backend_call(router_data)
print("🔗 API response received:", api_response)
# Generate user-friendly response using thread pool for CPU-bound LLM operation
loop = asyncio.get_event_loop()
user_response_result = await loop.run_in_executor(
thread_pool,
lambda: self.api_response_chain.invoke({
"user_query": user_query,
"api_response": json.dumps(api_response, indent=2),
"detected_language": detected_language,
"sentiment_analysis": json.dumps(sentiment_result),
})
)
print("🔗 Final user response:", user_response_result["text"].strip())
return {
"response": user_response_result["text"].strip(),
"api_data": api_response,
"routing_info": router_data
}
except Exception as e:
# Fallback error response
if detected_language == "arabic":
error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
else:
error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
return {
"response": error_msg,
"api_data": {"error": str(e)},
"routing_info": None
}
async def chat(self, user_message: str, user_id: str = None) -> ChatResponse:
"""Main chat method that handles user messages with async support"""
start_time = time.time()
# Use provided user_id or default
user_id = user_id or self.user_id
# Check rate limiting
if not await self._check_rate_limit():
return ChatResponse(
response_id=str(time.time()),
response_type="conversation",
message="I'm currently processing too many requests. Please try again in a moment.",
api_call_made=False,
language="english"
)
# Check for exit commands
if user_message.lower().strip() in ['quit', 'exit', 'خروج', 'bye', 'goodbye']:
if self.detect_language(user_message) == "arabic":
return ChatResponse(
response_id=str(time.time()),
response_type="conversation",
message="مع السلامة! أتمنى لك يوماً سعيداً. 👋",
language="arabic"
)
else:
return ChatResponse(
response_id=str(time.time()),
response_type="conversation",
message="Goodbye! Have a great day! 👋",
language="english"
)
try:
print(f"\n{'='*50}")
print(f"🔍 Processing: '{user_message}'")
print(f"{'='*50}")
# Step 1: Language and sentiment analysis (CPU-bound operations in thread pool)
loop = asyncio.get_event_loop()
detected_language = await loop.run_in_executor(
thread_pool, self.detect_language, user_message
)
sentiment_result = await loop.run_in_executor(
thread_pool, self.analyze_sentiment, user_message
)
keywords = await loop.run_in_executor(
thread_pool, self.extract_keywords, user_message
)
print(f"🌐 Detected Language: {detected_language}")
print(f"😊 Sentiment: {sentiment_result}")
print(f"🔑 Keywords: {keywords}")
# Step 2: Router Chain (CPU-bound LLM operation in thread pool)
print(f"\n🤖 Running Router Chain...")
router_result = await loop.run_in_executor(
thread_pool,
lambda: self.router_chain.invoke({
"user_query": user_message,
"detected_language": detected_language,
"extracted_keywords": json.dumps(keywords),
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context(user_id),
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
"current_datetime": datetime.now().strftime('%Y-%m-%dT%H:%M:%S'),
"timezone": "UTC",
"current_day_name": datetime.now().strftime('%A'),
})
)
# Parse router response
router_data = await loop.run_in_executor(
thread_pool, self.parse_router_response, router_result["text"]
)
print(f"🎯 Router Decision: {router_data}")
# Step 3: Handle based on intent
if router_data["intent"] == "CONVERSATION" and router_data['endpoint'] == '':
print(f"\n💬 Handling as CONVERSATION")
response_text = await loop.run_in_executor(
thread_pool,
lambda: self.handle_conversation(user_message, detected_language, sentiment_result)
)
# Add to conversation history
self.add_to_history(user_id, user_message, response_text, "conversation")
return ChatResponse(
response_id=str(time.time()),
response_type="conversation",
message=response_text,
api_call_made=False,
language=detected_language,
api_data=None
)
elif router_data["intent"] == "API_ACTION":
print(f"\n🔗 Handling as API_ACTION")
# Handle API action
api_result = await self.handle_api_action(
user_message, detected_language, sentiment_result, keywords, router_data
)
# Add to conversation history
self.add_to_history(user_id, user_message, api_result["response"], "api_action")
return ChatResponse(
response_id=str(time.time()),
response_type="api_action",
message=api_result["response"],
api_call_made=True,
language=detected_language
)
else:
# Fallback for unknown intent
print(f"⚠️ Unknown intent: {router_data['intent']}")
fallback_response = await loop.run_in_executor(
thread_pool,
lambda: self.handle_conversation(user_message, detected_language, sentiment_result)
)
return ChatResponse(
response_id=str(time.time()),
response_type="conversation",
message=fallback_response,
api_call_made=False,
language=detected_language
)
except Exception as e:
print(f"❌ Error in chat method: {str(e)}")
print(f"❌ Traceback: {traceback.format_exc()}")
# Fallback error response
if self.detect_language(user_message) == "arabic":
error_message = "أعتذر، حدث خطأ في معالجة رسالتك. يرجى المحاولة مرة أخرى."
else:
error_message = "I apologize, there was an error processing your message. Please try again."
return ChatResponse(
response_id=str(time.time()),
response_type="conversation",
message=error_message,
api_call_made=False,
language=self.detect_language(user_message)
)
finally:
end_time = time.time()
print(f"⏱️ Processing time: {end_time - start_time:.2f} seconds")
async def run_interactive_chat(self):
"""Run the interactive chat interface"""
try:
while True:
try:
# Get user input
user_input = input("\n👤 You: ").strip()
if not user_input:
continue
# Process the message
response = await self.chat(user_input)
# Display the response
print(f"\n🤖 Bot: {response.message}")
# Check for exit
if user_input.lower() in ['quit', 'exit', 'خروج', 'bye', 'goodbye']:
break
except KeyboardInterrupt:
print("\n\n👋 Chat interrupted. Goodbye!")
break
except EOFError:
print("\n\n👋 Chat ended. Goodbye!")
break
except Exception as e:
print(f"\n❌ Error: {e}")
continue
except Exception as e:
print(f"❌ Fatal error in chat interface: {e}")
def clear_history(self):
"""Clear conversation history"""
self.conversation_history = []
print("🗑️ Conversation history cleared.")
def main():
"""Main function to run the healthcare chatbot"""
try:
print("🚀 Starting Healthcare Chatbot...")
chatbot = HealthcareChatbot()
chatbot.run_interactive_chat()
except KeyboardInterrupt:
print("\n\n👋 Shutting down gracefully...")
except Exception as e:
print(f"❌ Fatal error: {e}")
print(f"❌ Traceback: {traceback.format_exc()}")
if __name__ == "__main__":
main()
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any, Optional
# FastAPI application setup
app = FastAPI(
title="Healthcare AI Assistant",
description="An AI-powered healthcare assistant that handles appointment booking and queries",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize the AI agent
agent = HealthcareChatbot()
class QueryRequest(BaseModel):
query: str
user_id: Optional[str] = None
@app.post("/query")
async def process_query(request: QueryRequest):
"""
Process a user query and return a response
"""
try:
response = await agent.chat(request.query, request.user_id)
return response.dict()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""
Health check endpoint
"""
return {"status": "healthy", "service": "healthcare-ai-assistant"}
@app.get("/")
async def root():
return {"message": "Hello World"}
@app.on_event("startup")
async def startup_event():
"""Initialize resources on startup"""
agent._initialize_http_client()
@app.on_event("shutdown")
async def shutdown_event():
"""Cleanup resources on shutdown"""
await agent._close_http_client()
thread_pool.shutdown(wait=True)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000, workers=4) |