File size: 45,242 Bytes
9c68b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
import re
import json
import requests
import traceback
import time
import os
import asyncio
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor

# Updated imports for pydantic
from pydantic import BaseModel, Field

# Updated imports for LangChain
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_ollama import OllamaLLM
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

# Enhanced HuggingFace imports for improved functionality
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import numpy as np

# FastAPI and async HTTP client imports
from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
import aiohttp
import httpx
from starlette.requests import Request
from starlette.responses import Response

# Import endpoints documentation
from endpoints_documentation import endpoints_documentation

# Set environment variables for HuggingFace
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"

# Global thread pool for CPU-bound operations
thread_pool = ThreadPoolExecutor(max_workers=4)

# Global HTTP client session for async requests
http_client = None

# Rate limiting settings
RATE_LIMIT_PER_MINUTE = 60
rate_limit_counter = 0
rate_limit_reset_time = time.time()


class ChatMessage(BaseModel):
    """Data model for chat messages"""
    message_id: str = Field(..., description="Unique identifier for the message")
    user_id: str = Field(..., description="User identifier")
    message: str = Field(..., description="The user's message")
    timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
    language: str = Field(default="english", description="Detected language of the message")


class ChatResponse(BaseModel):
    """Data model for chatbot responses"""
    response_id: str = Field(..., description="Unique identifier for the response")
    response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
    message: str = Field(..., description="The chatbot's response message")
    api_call_made: bool = Field(default=False, description="Whether an API call was made")
    api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
    language: str = Field(default="english", description="Language of the response")
    timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")


class RouterResponse(BaseModel):
    """Data model for router chain response"""
    intent: str = Field(..., description="Either 'API_ACTION' or 'CONVERSATION'")
    confidence: float = Field(..., description="Confidence score between 0.0 and 1.0")
    reasoning: str = Field(..., description="Explanation of the decision")
    endpoint: Optional[str] = Field(default=None, description="API endpoint if intent is API_ACTION")
    method: Optional[str] = Field(default=None, description="HTTP method if intent is API_ACTION")
    params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for API call")
    missing_required: List[str] = Field(default_factory=list, description="Missing required parameters")


class HealthcareChatbot:
    def __init__(self):
        self.endpoints_documentation = endpoints_documentation
        self.ollama_base_url = "http://localhost:11434"
        self.model_name = "gemma3"
        self.BASE_URL = 'https://8ac0-197-54-54-66.ngrok-free.app'
        self.headers = {'Content-type': 'application/json'}
        self.user_id = '9e889485-3db4-4f70-a7a2-e219beae6578'
        self.max_retries = 3
        self.retry_delay = 2
        
        # Store conversation history with user-specific sessions
        self.conversation_sessions = {}
        self.max_history_length = 10
        
        # Initialize components
        self._initialize_language_tools()
        self._initialize_llm()
        self._initialize_parsers_and_chains()
        self._initialize_date_parser()
        
        # Initialize async HTTP client
        self._initialize_http_client()
        
        print("Healthcare Chatbot initialized successfully!")
        self._print_welcome_message()

    def _initialize_http_client(self):
        """Initialize async HTTP client with connection pooling"""
        global http_client
        if http_client is None:
            http_client = httpx.AsyncClient(
                timeout=30.0,
                limits=httpx.Limits(max_keepalive_connections=100, max_connections=1000),
                transport=httpx.AsyncHTTPTransport(retries=3)
            )

    async def _close_http_client(self):
        """Close the HTTP client"""
        global http_client
        if http_client:
            await http_client.aclose()
            http_client = None

    def _get_user_session(self, user_id: str) -> List[Dict]:
        """Get or create user conversation session"""
        if user_id not in self.conversation_sessions:
            self.conversation_sessions[user_id] = []
        return self.conversation_sessions[user_id]

    async def _check_rate_limit(self) -> bool:
        """Check and update rate limiting"""
        global rate_limit_counter, rate_limit_reset_time
        current_time = time.time()
        
        # Reset counter if a minute has passed
        if current_time - rate_limit_reset_time >= 60:
            rate_limit_counter = 0
            rate_limit_reset_time = current_time
        
        # Check if we're over the limit
        if rate_limit_counter >= RATE_LIMIT_PER_MINUTE:
            return False
        
        rate_limit_counter += 1
        return True

    def _print_welcome_message(self):
        """Print welcome message in both languages"""
        print("\n" + "="*60)
        print("🏥 HEALTHCARE CHATBOT READY")
        print("="*60)
        print("English: Hello! I'm your healthcare assistant. I can help you with:")
        print("• Booking and managing appointments")
        print("• Finding hospital information")
        print("• Viewing your medical records")
        print("• General healthcare questions")
        print()
        print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
        print("• حجز وإدارة المواعيد")
        print("• العثور على معلومات المستشفى")
        print("• عرض سجلاتك الطبية")
        print("• الأسئلة الطبية العامة")
        print("="*60)
        print("Type 'quit' or 'خروج' to exit\n")

    def _initialize_language_tools(self):
        """Initialize language processing tools"""
        try:
            self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
            self.language_classifier = pipeline(
                "text-classification", 
                model="papluca/xlm-roberta-base-language-detection",
                top_k=1
            )
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
            )
            print("✓ Language processing models loaded successfully")
        except Exception as e:
            print(f"⚠ Warning: Some language models failed to load: {e}")
            self.language_classifier = None
            self.sentiment_analyzer = None

    def _initialize_date_parser(self):
        """Initialize date parsing model"""
        try:
            self.date_parser = pipeline(
                "token-classification",
                model="Jean-Baptiste/roberta-large-ner-english",
                aggregation_strategy="simple"
            )
        except Exception as e:
            print(f"⚠ Warning: Date parsing model failed to load: {e}")
            self.date_parser = None

    def _initialize_llm(self):
        """Initialize the LLM"""
        callbacks = [StreamingStdOutCallbackHandler()]
        self.llm = OllamaLLM(
            model=self.model_name,
            base_url=self.ollama_base_url,
            callbacks=callbacks,
            temperature=0.7,
            num_ctx=8192,
            top_p=0.9,
            request_timeout=60,
        )

    def _initialize_parsers_and_chains(self):
        """Initialize all prompt templates and chains - REVAMPED to 3 chains only"""
        self.json_parser = JsonOutputParser(pydantic_object=RouterResponse)

        # UNIFIED ROUTER CHAIN - Handles both intent classification AND API routing
        self.router_prompt_template = PromptTemplate(
              template="""
          You are a routing system. Your job is simple:
          1. Understand what the user wants
          2. Handle any dates/times in their request with PRECISE calculations
          3. Check if any endpoint can do what they want
          4. If yes = API_ACTION, if no = CONVERSATION

          ## Available API Endpoints Documentation
          {endpoints_documentation}

          ## User Query to Analyze
          Query: "{user_query}"
          Language: {detected_language}
          Current Context:
          - DateTime: {current_datetime}
          - Timezone: {timezone}
          - Current Day of Week: {current_day_name}

          ## Step-by-Step Analysis

          **STEP 1: What does the user want?**
          - If query is in Arabic, translate it to English first
          - Identify the exact action or information the user is requesting
          - Focus on understanding their underlying need, not just the words

          **STEP 2: Handle Date/Time Processing with PRECISE Calculations**
          IMPORTANT: Use the current datetime ({current_datetime}) and timezone ({timezone}) for ALL calculations.

          ### Current Date Reference Points:
          - Today is: {current_datetime}
          - Current day of week: {current_day_name}
          - Current timezone: {timezone}

          ### Arabic Date/Time Expressions Processing:
          **Basic Relative Dates:**
          - "اليوم" (today) = {current_datetime} date portion
          - "غدا" (tomorrow) = current date + 1 day
          - "أمس" (yesterday) = current date - 1 day
          - "بعد غد" (day after tomorrow) = current date + 2 days

          **Weekly Expressions - CALCULATE PRECISELY:**
          - "الأسبوع القادم" (next week) = current date + 7 days
          - "الأسبوع الماضي" (last week) = current date - 7 days

          **Specific Weekday Calculations - MOST IMPORTANT:**
          For expressions like "يوم [weekday] القادم" (next [weekday]):
          1. Identify the target weekday from Arabic names:
          - الأحد (Sunday) = 0
          - الاثنين (Monday) = 1  
          - الثلاثاء (Tuesday) = 2
          - الأربعاء (Wednesday) = 3
          - الخميس (Thursday) = 4
          - الجمعة (Friday) = 5
          - السبت (Saturday) = 6

          2. Calculate days to add:
          - Get current weekday number (0=Sunday, 1=Monday, etc.)
          - Target weekday number
          - If target > current: days_to_add = target - current
          - If target <= current: days_to_add = 7 - (current - target)
          - Final date = current_date + days_to_add

          **Example Calculation:**
          If today is Sunday (June 1, 2025) and user says "يوم الاربع القادم" (next Wednesday):
          - Current weekday: 0 (Sunday)
          - Target weekday: 3 (Wednesday)  
          - Days to add: 3 - 0 = 3
          - Result: June 1 + 3 days = June 4, 2025

          **Monthly/Yearly Expressions:**
          - "الشهر القادم" (next month) = add 1 month to current date
          - "الشهر الماضي" (last month) = subtract 1 month from current date
          - "السنة القادمة" (next year) = add 1 year to current date

          **Time Expressions:**
          - "صباحًا" (morning/AM) = 09:00 if no specific time given
          - "مساءً" (evening/PM) = 18:00 if no specific time given
          - "ظهرًا" (noon) = 12:00
          - "منتصف الليل" (midnight) = 00:00
          - "بعد ساعتين" (in 2 hours) = current time + 2 hours
          - "قبل ساعة" (1 hour ago) = current time - 1 hour

          **Date Format Output:**
          - Always convert final calculated date to ISO 8601 format: YYYY-MM-DDTHH:MM:SS
          - Include timezone offset if available
          - For date-only expressions, use 00:00:00 as default time

          **STEP 3: Find matching endpoint**
          - Read each endpoint description in the documentation
          - Check if any endpoint's purpose can fulfill what the user wants
          - Match based on functionality, not keywords

          **STEP 4: Decision**
          - Found matching endpoint = "API_ACTION"
          - No matching endpoint = "CONVERSATION"

          **STEP 5: Parameter Extraction (only if API_ACTION)**
          - Extract parameter values from user query
          - Use the CALCULATED dates/times from Step 2
          - Convert all dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
          - List any missing required parameters
          - **CRITICAL: All parameters must be in English**
            - Translate any Arabic text to English
            - Convert names to English equivalents (e.g., "دكتور احمد" → "Dr. Ahmed")
            - Use standard English terms for all parameters

          ## Output Format
          {{
              "intent": "CONVERSATION|API_ACTION",
              "confidence": 0.8,
              "reasoning": "User wants: [what user actually needs]. Date/time processing: [show exact calculation: current date + X days = final date]. Found endpoint: [endpoint path and why it matches] OR No endpoint matches this need",
              "endpoint": "/exact/endpoint/path",
              "method": "GET|POST|PUT|DELETE",
              "params": {{
                  // ALL VALUES MUST BE IN ENGLISH
                  // Arabic terms must be translated to English equivalents
              }},
              "missing_required": [],
              "calculated_datetime": "YYYY-MM-DDTHH:MM:SS (if date/time was processed)"
          }}

          ## CRITICAL REMINDERS:
          1. ALWAYS use the provided current_datetime ({current_datetime}) as your base for calculations
          2. For "next weekday" expressions, calculate the exact number of days to add
          3. Show your calculation work in the reasoning field
          4. Double-check weekday numbers: Sunday=0, Monday=1, Tuesday=2, Wednesday=3, Thursday=4, Friday=5, Saturday=6
          5. **ALL PARAMETERS MUST BE IN ENGLISH** - translate any Arabic text before output

          **FINAL CHECK BEFORE OUTPUTTING:**
          🔍 **MANDATORY LANGUAGE CHECK:**
          1. Examine every value in the params object
          2. If ANY value contains Arabic characters (ا-ي), you MUST:
            - Translate it to English
            - Convert names to English equivalents
            - Replace Arabic terms with English counterparts
          3. Only output JSON when ALL parameters are in English

          Now analyze the user query step by step and give me the JSON response.
          """,
              input_variables=["user_query", "detected_language", "extracted_keywords", 
                              "sentiment_analysis", "endpoints_documentation", "current_datetime", 
                              "timezone", "current_day_name"]
          )

        # CONVERSATION CHAIN - Handles conversational responses
        self.conversation_template = PromptTemplate(
            template="""
            You are a friendly and professional healthcare chatbot assistant.

            === RESPONSE GUIDELINES ===
            - Respond ONLY in {detected_language}
            - Be helpful, empathetic, and professional
            - Keep responses concise but informative
            - Use appropriate medical terminology when needed
            - Maintain a caring and supportive tone

            === CONTEXT ===
            User Message: {user_query}
            Language: {detected_language}
            Sentiment: {sentiment_analysis}
            Conversation History: {conversation_history}

            === LANGUAGE-SPECIFIC INSTRUCTIONS ===

            FOR ARABIC RESPONSES:
            - Use Modern Standard Arabic (الفصحى)
            - Be respectful and formal as appropriate in Arabic culture
            - Use proper Arabic medical terminology
            - Keep sentences clear and grammatically correct

            FOR ENGLISH RESPONSES:
            - Use clear, professional English
            - Be warm and approachable
            - Use appropriate medical terminology

            === RESPONSE RULES ===
            1. Address the user's question or comment directly
            2. Provide helpful information when possible
            3. If you cannot help with something specific, explain what you CAN help with
            4. Never provide specific medical advice - always recommend consulting healthcare professionals
            5. Be encouraging and supportive
            6. Do NOT mix languages in your response
            7. End responses naturally without asking multiple questions

            Generate a helpful conversational response:""",
            input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
        )

        # API RESPONSE CHAIN - Formats API responses for users
        self.api_response_template = PromptTemplate(
              template="""
          You are a professional healthcare assistant. Generate a natural language response to the user's query using ONLY the provided API data.

          User Query: {user_query}
          User Sentiment: {sentiment_analysis}
          Response Language: {detected_language}

          API Response Data:
          {api_response}

          === CORE INSTRUCTIONS ===

          1. Analyze the API response structure and extract relevant data points
          2. Cross-reference with the user's query to determine what information to include
          3. Respond in {detected_language} using a warm, conversational tone
          4. Convert technical data into natural language appropriate for healthcare communication

          === DATE/TIME HANDLING ===

          1. Identify all date/time fields in the API response (look for ISO 8601 format: YYYY-MM-DDTHH:MM:SS)
          2. For English responses:
            - Format dates as "Month Day, Year at HH:MM AM/PM"
            - Convert times to 12-hour format with proper AM/PM
          3. For Arabic responses:
            - Format dates as "Day Month Year الساعة HH:MM صباحاً/مساءً"
            - Use Arabic numerals (٠١٢٣٤٥٦٧٨٩)
            - Use Arabic month names
          4. Preserve all original date/time values - only change the formatting

          === RESPONSE GUIDELINES ===

          1. Use ONLY data present in the API response
          2. Maintain a professional yet friendly healthcare tone
          3. Adapt to the user's sentiment: 
            - Positive: reinforce with encouraging language
            - Neutral: provide clear, factual information
            - Negative: show empathy and offer assistance
          4. Structure the response to directly answer the user's query
          5. Include relevant details from the API response that address the user's needs

          === CRITICAL RULES ===

          1. Never invent or hallucinate information not present in the API response
          2. If the API response doesn't contain requested information, say so politely
          3. All dates/times must exactly match the API data
          4. Maintain strict language consistency (respond only in {detected_language})
          5. Format all technical data (IDs, codes, etc.) for easy understanding

          Generate a helpful response that addresses the user's query using the API data.
          """,
              input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
          )

        # Create the 3 chains
        self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
        self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
        self.api_response_chain = LLMChain(llm=self.llm, prompt=self.api_response_template)

    def detect_language(self, text):
        """Detect language of the input text"""
        if self.language_classifier and len(text.strip()) > 3:
            try:
                result = self.language_classifier(text)
                detected_lang = result[0][0]['label']
                confidence = result[0][0]['score']
                
                if detected_lang in ['ar', 'arabic']:
                    return "arabic"
                elif detected_lang in ['en', 'english']:
                    return "english"
                elif confidence > 0.8:
                    return "english"  # Default to English for unsupported languages
            except:
                pass
        
        # Fallback: Basic Arabic detection
        arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
        if arabic_pattern.search(text):
            return "arabic"
        
        return "english"

    def analyze_sentiment(self, text):
        """Analyze sentiment of the text"""
        if self.sentiment_analyzer and len(text.strip()) > 3:
            try:
                result = self.sentiment_analyzer(text)
                return {
                    "sentiment": result[0]['label'],
                    "score": result[0]['score']
                }
            except:
                pass
        
        return {"sentiment": "NEUTRAL", "score": 0.5}

    def extract_keywords(self, text):
        """Extract keywords from text"""
        # Simple keyword extraction
        words = re.findall(r'\b\w+\b', text.lower())
        # Filter out common words and keep meaningful ones
        stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
        keywords = [w for w in words if len(w) > 3 and w not in stopwords]
        return list(set(keywords))[:5]  # Return top 5 unique keywords

    def get_conversation_context(self, user_id: str) -> str:
        """Get recent conversation history as context"""
        history = self._get_user_session(user_id)
        if not history:
            return "No previous conversation"
        
        context = []
        for item in history[-3:]:  # Last 3 exchanges
            context.append(f"User: {item['user_message']}")
            context.append(f"Bot: {item['bot_response'][:100]}...")  # Truncate long responses
        
        return " | ".join(context)

    def add_to_history(self, user_id: str, user_message: str, bot_response: str, response_type: str):
        """Add exchange to conversation history"""
        history = self._get_user_session(user_id)
        history.append({
            'timestamp': datetime.now(),
            'user_message': user_message,
            'bot_response': bot_response,
            'response_type': response_type
        })
        
        # Keep only recent history
        if len(history) > self.max_history_length:
            self.conversation_sessions[user_id] = history[-self.max_history_length:]

    def parse_relative_date(self, text, detected_language):
        """Parse relative dates from text using a combination of methods"""
        today = datetime.now()
        
        # Handle common relative date patterns in English and Arabic
        tomorrow_patterns = {
            'english': [r'\btomorrow\b', r'\bnext day\b'],
            'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
        }
        
        next_week_patterns = {
            'english': [r'\bnext week\b'],
            'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
        }
        
        # Check for "tomorrow" patterns
        for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
            if re.search(pattern, text, re.IGNORECASE):
                return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
        
        # Check for "next week" patterns
        for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
            if re.search(pattern, text, re.IGNORECASE):
                return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')
        
        # If NER model is available, use it to extract date entities
        if self.date_parser and detected_language == 'english':
            try:
                date_entities = self.date_parser(text)
                for entity in date_entities:
                    if entity['entity_group'] == 'DATE':
                        print(f"Found date entity: {entity['word']}")
                        # Default to tomorrow if we detect any date
                        return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
            except Exception as e:
                print(f"Error in date parsing: {e}")
        
        # Default return None if no date pattern is recognized
        return None

    def parse_router_response(self, router_text):
        """Parse the router chain response into structured data"""
        try:
            # Clean the response text
            cleaned_response = router_text
            
            # Remove any comments (both single-line and multi-line)
            cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
            cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
            
            # Remove any trailing commas
            cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
            
            # Try different methods to parse the JSON response
            try:
                # First attempt: direct JSON parsing of cleaned response
                parsed_response = json.loads(cleaned_response)
            except json.JSONDecodeError:
                try:
                    # Second attempt: extract JSON from markdown code block
                    json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
                    if json_match:
                        parsed_response = json.loads(json_match.group(1))
                    else:
                        raise ValueError("No JSON found in code block")
                except (json.JSONDecodeError, ValueError):
                    try:
                        # Third attempt: find JSON-like content using regex
                        json_pattern = r'\{\s*"intent"\s*:.*?\}'
                        json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
                        if json_match:
                            json_str = json_match.group(0)
                            # Additional cleaning for the extracted JSON
                            json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
                            json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
                            parsed_response = json.loads(json_str)
                        else:
                            raise ValueError("Could not extract JSON using regex")
                    except (json.JSONDecodeError, ValueError):
                        print(f"Failed to parse JSON. Raw response: {router_text}")
                        print(f"Cleaned response: {cleaned_response}")
                        # Return default conversation response on parse failure
                        return {
                            "intent": "CONVERSATION",
                            "confidence": 0.5,
                            "reasoning": "Failed to parse router response - defaulting to conversation",
                            "endpoint": None,
                            "method": None,
                            "params": {},
                            "missing_required": []
                        }
            
            # Validate required fields and set defaults
            validated_response = {
                "intent": parsed_response.get("intent", "CONVERSATION"),
                "confidence": parsed_response.get("confidence", 0.5),
                "reasoning": parsed_response.get("reasoning", "Router decision"),
                "endpoint": parsed_response.get("endpoint"),
                "method": parsed_response.get("method"),
                "params": parsed_response.get("params", {}),
                "missing_required": parsed_response.get("missing_required", [])
            }
            
            return validated_response
            
        except Exception as e:
            print(f"Error parsing router response: {e}")
            return {
                "intent": "CONVERSATION",
                "confidence": 0.5,
                "reasoning": f"Parse error: {str(e)}",
                "endpoint": None,
                "method": None,
                "params": {},
                "missing_required": []
            }

    def handle_conversation(self, user_query, detected_language, sentiment_result):
        """Handle conversational responses"""
        try:
            result = self.conversation_chain.invoke({
                "user_query": user_query,
                "detected_language": detected_language,
                "sentiment_analysis": json.dumps(sentiment_result),
                "conversation_history": self.get_conversation_context(self.user_id)
            })
            
            return result["text"].strip()
            
        except Exception as e:
            # Fallback response
            if detected_language == "arabic":
                return "أعتذر، واجهت مشكلة في المعالجة. كيف يمكنني مساعدتك؟"
            else:
                return "I apologize, I encountered a processing issue. How can I help you?"

    async def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Make async API call to backend with retry logic"""
        endpoint_url = data.get('endpoint')
        endpoint_method = data.get('method')
        endpoint_params = data.get('params', {}).copy()

        print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
        
        # Inject patient_id if needed
        if 'patient_id' in endpoint_params:
            endpoint_params['patient_id'] = self.user_id
        
        retries = 0
        while retries < self.max_retries:
            try:
                if endpoint_method.upper() == 'GET':
                    response = await http_client.get(
                        self.BASE_URL + endpoint_url,
                        params=endpoint_params,
                        headers=self.headers
                    )
                else:
                    response = await http_client.request(
                        endpoint_method.upper(),
                        self.BASE_URL + endpoint_url,
                        json=endpoint_params,
                        headers=self.headers
                    )
                
                response.raise_for_status()
                return response.json()
                
            except httpx.HTTPError as e:
                retries += 1
                if retries >= self.max_retries:
                    return {
                        "error": "Backend API call failed after multiple retries",
                        "details": str(e),
                        "status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
                    }
                
                await asyncio.sleep(self.retry_delay)

    async def handle_api_action(self, user_query: str, detected_language: str, 
                              sentiment_result: Dict, keywords: List[str], 
                              router_data: Dict) -> Dict[str, Any]:
        """Handle API-based actions using router data"""
        try:
            # Inject patient_id if needed
            if 'patient_id' in router_data['params']:
                router_data['params']['patient_id'] = self.user_id
            else:
                router_data['params']['patient_id'] = self.user_id
            
            print(f"🔍 Final API call data: {router_data}")

            # Make backend API call
            api_response = await self.backend_call(router_data)
            
            print("🔗 API response received:", api_response)
            
            # Generate user-friendly response using thread pool for CPU-bound LLM operation
            loop = asyncio.get_event_loop()
            user_response_result = await loop.run_in_executor(
                thread_pool,
                lambda: self.api_response_chain.invoke({
                    "user_query": user_query,
                    "api_response": json.dumps(api_response, indent=2),
                    "detected_language": detected_language,
                    "sentiment_analysis": json.dumps(sentiment_result),
                })
            )

            print("🔗 Final user response:", user_response_result["text"].strip())
            
            return {
                "response": user_response_result["text"].strip(),
                "api_data": api_response,
                "routing_info": router_data
            }
            
        except Exception as e:
            # Fallback error response
            if detected_language == "arabic":
                error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
            else:
                error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
            
            return {
                "response": error_msg,
                "api_data": {"error": str(e)},
                "routing_info": None
            }

    async def chat(self, user_message: str, user_id: str = None) -> ChatResponse:
        """Main chat method that handles user messages with async support"""
        start_time = time.time()
        
        # Use provided user_id or default
        user_id = user_id or self.user_id
        
        # Check rate limiting
        if not await self._check_rate_limit():
            return ChatResponse(
                response_id=str(time.time()),
                response_type="conversation",
                message="I'm currently processing too many requests. Please try again in a moment.",
                api_call_made=False,
                language="english"
            )
        
        # Check for exit commands
        if user_message.lower().strip() in ['quit', 'exit', 'خروج', 'bye', 'goodbye']:
            if self.detect_language(user_message) == "arabic":
                return ChatResponse(
                    response_id=str(time.time()),
                    response_type="conversation",
                    message="مع السلامة! أتمنى لك يوماً سعيداً. 👋",
                    language="arabic"
                )
            else:
                return ChatResponse(
                    response_id=str(time.time()),
                    response_type="conversation",
                    message="Goodbye! Have a great day! 👋",
                    language="english"
                )
        
        try:
            print(f"\n{'='*50}")
            print(f"🔍 Processing: '{user_message}'")
            print(f"{'='*50}")
            
            # Step 1: Language and sentiment analysis (CPU-bound operations in thread pool)
            loop = asyncio.get_event_loop()
            detected_language = await loop.run_in_executor(
                thread_pool, self.detect_language, user_message
            )
            sentiment_result = await loop.run_in_executor(
                thread_pool, self.analyze_sentiment, user_message
            )
            keywords = await loop.run_in_executor(
                thread_pool, self.extract_keywords, user_message
            )
            
            print(f"🌐 Detected Language: {detected_language}")
            print(f"😊 Sentiment: {sentiment_result}")
            print(f"🔑 Keywords: {keywords}")
            
            # Step 2: Router Chain (CPU-bound LLM operation in thread pool)
            print(f"\n🤖 Running Router Chain...")
            router_result = await loop.run_in_executor(
                thread_pool,
                lambda: self.router_chain.invoke({
                    "user_query": user_message,
                    "detected_language": detected_language,
                    "extracted_keywords": json.dumps(keywords),
                    "sentiment_analysis": json.dumps(sentiment_result),
                    "conversation_history": self.get_conversation_context(user_id),
                    "endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
                    "current_datetime": datetime.now().strftime('%Y-%m-%dT%H:%M:%S'),
                    "timezone": "UTC",
                    "current_day_name": datetime.now().strftime('%A'),
                })
            )
            
            # Parse router response
            router_data = await loop.run_in_executor(
                thread_pool, self.parse_router_response, router_result["text"]
            )
            print(f"🎯 Router Decision: {router_data}")
            
            # Step 3: Handle based on intent
            if router_data["intent"] == "CONVERSATION" and router_data['endpoint'] == '':
                print(f"\n💬 Handling as CONVERSATION")
                response_text = await loop.run_in_executor(
                    thread_pool,
                    lambda: self.handle_conversation(user_message, detected_language, sentiment_result)
                )
                
                # Add to conversation history
                self.add_to_history(user_id, user_message, response_text, "conversation")
                
                return ChatResponse(
                    response_id=str(time.time()),
                    response_type="conversation",
                    message=response_text,
                    api_call_made=False,
                    language=detected_language,
                    api_data=None
                )
                
            elif router_data["intent"] == "API_ACTION":
                print(f"\n🔗 Handling as API_ACTION")
                
                # Handle API action
                api_result = await self.handle_api_action(
                    user_message, detected_language, sentiment_result, keywords, router_data
                )
                
                # Add to conversation history
                self.add_to_history(user_id, user_message, api_result["response"], "api_action")
                
                return ChatResponse(
                    response_id=str(time.time()),
                    response_type="api_action",
                    message=api_result["response"],
                    api_call_made=True,
                    language=detected_language
                )
            
            else:
                # Fallback for unknown intent
                print(f"⚠️ Unknown intent: {router_data['intent']}")
                fallback_response = await loop.run_in_executor(
                    thread_pool,
                    lambda: self.handle_conversation(user_message, detected_language, sentiment_result)
                )
                
                return ChatResponse(
                    response_id=str(time.time()),
                    response_type="conversation",
                    message=fallback_response,
                    api_call_made=False,
                    language=detected_language
                )
                
        except Exception as e:
            print(f"❌ Error in chat method: {str(e)}")
            print(f"❌ Traceback: {traceback.format_exc()}")
            
            # Fallback error response
            if self.detect_language(user_message) == "arabic":
                error_message = "أعتذر، حدث خطأ في معالجة رسالتك. يرجى المحاولة مرة أخرى."
            else:
                error_message = "I apologize, there was an error processing your message. Please try again."
            
            return ChatResponse(
                response_id=str(time.time()),
                response_type="conversation",
                message=error_message,
                api_call_made=False,
                language=self.detect_language(user_message)
            )
        
        finally:
            end_time = time.time()
            print(f"⏱️ Processing time: {end_time - start_time:.2f} seconds")

    async def run_interactive_chat(self):
        """Run the interactive chat interface"""
        try:
            while True:
                try:
                    # Get user input
                    user_input = input("\n👤 You: ").strip()
                    
                    if not user_input:
                        continue
                    
                    # Process the message
                    response = await self.chat(user_input)
                    
                    # Display the response
                    print(f"\n🤖 Bot: {response.message}")
                    
                    # Check for exit
                    if user_input.lower() in ['quit', 'exit', 'خروج', 'bye', 'goodbye']:
                        break
                        
                except KeyboardInterrupt:
                    print("\n\n👋 Chat interrupted. Goodbye!")
                    break
                except EOFError:
                    print("\n\n👋 Chat ended. Goodbye!")
                    break
                except Exception as e:
                    print(f"\n❌ Error: {e}")
                    continue
                    
        except Exception as e:
            print(f"❌ Fatal error in chat interface: {e}")

    def clear_history(self):
        """Clear conversation history"""
        self.conversation_history = []
        print("🗑️ Conversation history cleared.")


def main():
    """Main function to run the healthcare chatbot"""
    try:
        print("🚀 Starting Healthcare Chatbot...")
        chatbot = HealthcareChatbot()
        chatbot.run_interactive_chat()
        
    except KeyboardInterrupt:
        print("\n\n👋 Shutting down gracefully...")
    except Exception as e:
        print(f"❌ Fatal error: {e}")
        print(f"❌ Traceback: {traceback.format_exc()}")


if __name__ == "__main__":
    main()


from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any, Optional


# FastAPI application setup
app = FastAPI(
    title="Healthcare AI Assistant",
    description="An AI-powered healthcare assistant that handles appointment booking and queries",
    version="1.0.0"
)

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize the AI agent
agent = HealthcareChatbot()

class QueryRequest(BaseModel):
    query: str
    user_id: Optional[str] = None

@app.post("/query")
async def process_query(request: QueryRequest):
    """
    Process a user query and return a response
    """
    try:
        response = await agent.chat(request.query, request.user_id)
        return response.dict()
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """
    Health check endpoint
    """
    return {"status": "healthy", "service": "healthcare-ai-assistant"}

@app.get("/")
async def root():
    return {"message": "Hello World"}

@app.on_event("startup")
async def startup_event():
    """Initialize resources on startup"""
    agent._initialize_http_client()

@app.on_event("shutdown")
async def shutdown_event():
    """Cleanup resources on shutdown"""
    await agent._close_http_client()
    thread_pool.shutdown(wait=True)

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000, workers=4)