Spaces:
Running
Running
File size: 38,118 Bytes
b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 691b688 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b011019 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b011019 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 b8f3012 b9333d0 cdee10f b9333d0 cdee10f b8f3012 cdee10f 4f580f8 cdee10f b8f3012 cdee10f 3483e5e 5f8f5f0 fd37d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
import re
import json
import requests
import traceback
import time
import os
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
# Updated imports for pydantic
from pydantic import BaseModel, Field
# Updated imports for LangChain
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_ollama import OllamaLLM
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
# Enhanced HuggingFace imports for improved functionality
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
# Import endpoints documentation
from endpoints_documentation import endpoints_documentation
# Set environment variables for HuggingFace
# if os.name == 'posix' and os.uname().sysname == 'Darwin': # Check if running on macOS
# os.environ["HF_HOME"] = os.path.expanduser("~/Library/Caches/huggingface")
# os.environ["TRANSFORMERS_CACHE"] = os.path.expanduser("~/Library/Caches/huggingface/transformers")
# else:
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
class ChatMessage(BaseModel):
"""Data model for chat messages"""
message_id: str = Field(..., description="Unique identifier for the message")
user_id: str = Field(..., description="User identifier")
message: str = Field(..., description="The user's message")
timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
language: str = Field(default="english", description="Detected language of the message")
class ChatResponse(BaseModel):
"""Data model for chatbot responses"""
response_id: str = Field(..., description="Unique identifier for the response")
response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
message: str = Field(..., description="The chatbot's response message")
api_call_made: bool = Field(default=False, description="Whether an API call was made")
api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
language: str = Field(default="english", description="Language of the response")
timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")
class EndpointRequest(BaseModel):
"""Data model for API endpoint requests"""
endpoint: str = Field(..., description="The API endpoint path to call")
method: str = Field(..., description="The HTTP method to use (GET or POST)")
params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for the API call")
missing_required: List[str] = Field(default_factory=list, description="Any required parameters that are missing")
class HealthcareChatbot:
def __init__(self):
self.endpoints_documentation = endpoints_documentation
self.ollama_base_url = "http://localhost:11434"
self.model_name = "gemma3"
self.BASE_URL = 'https://d623-105-196-69-205.ngrok-free.app'
self.headers = {'Content-type': 'application/json'}
self.user_id = '5c745974-f1e6-4a9d-b93f-0e0aa75c5b09'
self.max_retries = 3
self.retry_delay = 2
# Store conversation history
self.conversation_history = []
self.max_history_length = 10 # Keep last 10 exchanges
# Initialize components
self._initialize_language_tools()
self._initialize_llm()
self._initialize_parsers_and_chains()
self._initialize_date_parser()
print("Healthcare Chatbot initialized successfully!")
self._print_welcome_message()
def _print_welcome_message(self):
"""Print welcome message in both languages"""
print("\n" + "="*60)
print("🏥 HEALTHCARE CHATBOT READY")
print("="*60)
print("English: Hello! I'm your healthcare assistant. I can help you with:")
print("• Booking and managing appointments")
print("• Finding hospital information")
print("• Viewing your medical records")
print("• General healthcare questions")
print()
print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
print("• حجز وإدارة المواعيد")
print("• العثور على معلومات المستشفى")
print("• عرض سجلاتك الطبية")
print("• الأسئلة الطبية العامة")
print("="*60)
print("Type 'quit' or 'خروج' to exit\n")
def _initialize_language_tools(self):
"""Initialize language processing tools"""
try:
self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
self.language_classifier = pipeline(
"text-classification",
model="papluca/xlm-roberta-base-language-detection",
top_k=1
)
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
)
print("✓ Language processing models loaded successfully")
except Exception as e:
print(f"⚠ Warning: Some language models failed to load: {e}")
self.language_classifier = None
self.sentiment_analyzer = None
def _initialize_date_parser(self):
"""Initialize date parsing model"""
try:
self.date_parser = pipeline(
"token-classification",
model="Jean-Baptiste/roberta-large-ner-english",
aggregation_strategy="simple"
)
except Exception as e:
print(f"⚠ Warning: Date parsing model failed to load: {e}")
self.date_parser = None
def _initialize_llm(self):
"""Initialize the LLM"""
callbacks = [StreamingStdOutCallbackHandler()]
self.llm = OllamaLLM(
model=self.model_name,
base_url=self.ollama_base_url,
callbacks=callbacks,
temperature=0.7,
num_ctx=8192,
top_p=0.9,
request_timeout=60,
)
def _initialize_parsers_and_chains(self):
"""Initialize all prompt templates and chains"""
self.json_parser = JsonOutputParser(pydantic_object=EndpointRequest)
# Intent classification prompt
self.intent_classifier_template = PromptTemplate(
template="""
You are an intent classifier for a healthcare chatbot. Analyze the user's message and determine if it requires an API call or is conversational.
=== ANALYSIS CONTEXT ===
User Message: {user_query}
Language: {detected_language}
Conversation History: {conversation_history}
=== AVAILABLE API ENDPOINTS ===
{endpoints_documentation}
=== CLASSIFICATION TASK ===
Determine if the user's message requires:
1. API_ACTION: Specific healthcare action (book appointment, view records, etc.)
2. CONVERSATION: General chat, greeting, questions not requiring backend data
=== RESPONSE FORMAT ===
Respond with EXACTLY this JSON structure:
{{
"intent": "API_ACTION" or "CONVERSATION",
"confidence": 0.95,
"reasoning": "Brief explanation of classification decision",
"requires_backend": true or false
}}
=== CLASSIFICATION RULES ===
Choose API_ACTION for:
- Booking, canceling, or viewing appointments
- Requesting medical records or test results
- Hospital information queries (locations, hours, etc.)
- Medication management requests
- Specific patient data requests
Choose CONVERSATION for:
- Greetings and pleasantries
- General health advice (not patient-specific)
- Explanations of medical terms
- Small talk or casual questions
- Questions about the chatbot itself
Classify the intent:""",
input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
)
# API routing prompt (reuse existing router_prompt_template)
self.router_prompt_template = PromptTemplate(
template="""
You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
=== ENDPOINT DOCUMENTATION ===
{endpoints_documentation}
=== USER REQUEST ANALYSIS ===
User Query: {user_query}
Language: {detected_language}
Keywords: {extracted_keywords}
Sentiment: {sentiment_analysis}
=== ROUTING PROCESS ===
Follow these steps in order:
STEP 1: INTENT ANALYSIS
- What is the user trying to accomplish?
- What type of operation are they requesting? (create, read, update, delete, search, etc.)
- What entity/resource are they working with?
STEP 2: ENDPOINT MATCHING
- Review each endpoint in the documentation
- Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
- Consider the HTTP method (GET for retrieval, POST for creation, etc.)
- Verify the endpoint can handle the user's specific request
STEP 3: PARAMETER EXTRACTION
- Identify ALL required parameters from the endpoint documentation
- Extract parameter values from the user query
- Convert data types as needed (dates to ISO 8601, numbers to integers, etc.)
- Set appropriate defaults for optional parameters if beneficial
STEP 4: VALIDATION
- Ensure ALL required parameters are provided or identified as missing
- Verify parameter formats match documentation requirements
- Check that the selected endpoint actually solves the user's problem
=== RESPONSE FORMAT ===
Provide your analysis and decision in this exact JSON structure:
{{
"reasoning": {{
"user_intent": "Brief description of what the user wants to accomplish",
"selected_endpoint": "Why this endpoint was chosen over others",
"parameter_mapping": "How user query maps to endpoint parameters"
}},
"endpoint": "/exact_endpoint_path_from_documentation",
"method": "HTTP_METHOD",
"params": {{
"required_param_1": "extracted_or_converted_value",
"required_param_2": "extracted_or_converted_value",
"optional_param": "value_if_applicable"
}},
"missing_required": ["list", "of", "missing", "required", "parameters"],
"confidence": 0.95
}}
=== CRITICAL RULES ===
1. ONLY select endpoints that exist in the provided documentation
2. NEVER fabricate or assume endpoint parameters not in documentation
3. ALL required parameters MUST be included or listed as missing
4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
5. If patient_id is required and not provided, add it to missing_required
6. Match endpoints by PURPOSE, not just keywords in the path
7. If multiple endpoints could work, choose the most specific one
8. If no endpoint matches, set endpoint to null and explain in reasoning
=== EXAMPLES OF GOOD MATCHING ===
- User wants "patient records" → Use patient retrieval endpoint, not general search
- User wants to "schedule appointment" → Use appointment creation endpoint
- User asks "what appointments today" → Use appointment listing with date filter
- User wants to "update medication" → Use medication update endpoint with patient_id
Think step by step and be precise with your endpoint selection and parameter extraction.:""",
input_variables=["endpoints_documentation", "user_query", "detected_language",
"extracted_keywords", "sentiment_analysis", "conversation_history"]
)
# Conversational response prompt
self.conversation_template = PromptTemplate(
template="""
You are a friendly and professional healthcare chatbot assistant.
=== RESPONSE GUIDELINES ===
- Respond ONLY in {detected_language}
- Be helpful, empathetic, and professional
- Keep responses concise but informative
- Use appropriate medical terminology when needed
- Maintain a caring and supportive tone
=== CONTEXT ===
User Message: {user_query}
Language: {detected_language}
Sentiment: {sentiment_analysis}
Conversation History: {conversation_history}
=== LANGUAGE-SPECIFIC INSTRUCTIONS ===
FOR ARABIC RESPONSES:
- Use Modern Standard Arabic (الفصحى)
- Be respectful and formal as appropriate in Arabic culture
- Use proper Arabic medical terminology
- Keep sentences clear and grammatically correct
FOR ENGLISH RESPONSES:
- Use clear, professional English
- Be warm and approachable
- Use appropriate medical terminology
=== RESPONSE RULES ===
1. Address the user's question or comment directly
2. Provide helpful information when possible
3. If you cannot help with something specific, explain what you CAN help with
4. Never provide specific medical advice - always recommend consulting healthcare professionals
5. Be encouraging and supportive
6. Do NOT mix languages in your response
7. End responses naturally without asking multiple questions
Generate a helpful conversational response:""",
input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
)
# API response formatting prompt (reuse existing user_response_template)
self.user_response_template = PromptTemplate(
template="""
You are a professional healthcare assistant. Generate clear, accurate responses using EXACT data from the system.
=== STRICT REQUIREMENTS ===
- Respond ONLY in {detected_language}
- Use EXACT information from api_response - NO modifications
- Keep responses SHORT, SIMPLE, and DIRECT
- Use professional healthcare tone
- NEVER mix languages or make up information
=== ORIGINAL REQUEST ===
User Query: {user_query}
User Sentiment: {sentiment_analysis}
=== SYSTEM DATA ===
{api_response}
=== LANGUAGE-SPECIFIC FORMATTING ===
FOR ARABIC RESPONSES:
- Use Modern Standard Arabic (الفصحى)
- Use Arabic numerals: ١، ٢، ٣، ٤، ٥، ٦، ٧، ٨، ٩، ١٠
- Time format: "من الساعة ٨:٠٠ صباحاً إلى ٥:٠٠ مساءً"
- Date format: "١٥ مايو ٢٠٢٥"
- Use proper Arabic medical terminology
- Keep sentences short and grammatically correct
- Example format for hospitals:
"مستشفى [الاسم] - العنوان: [العنوان الكامل] - أوقات العمل: من [الوقت] إلى [الوقت]"
FOR ENGLISH RESPONSES:
- Use clear, professional language
- Time format: "8:00 AM to 5:00 PM"
- Date format: "May 15, 2025"
- Keep sentences concise and direct
- Example format for hospitals:
"[Hospital Name] - Address: [Full Address] - Hours: [Opening Time] to [Closing Time]"
=== RESPONSE STRUCTURE ===
1. Direct answer to the user's question
2. Essential details only (names, addresses, hours, contact info)
3. Brief helpful note if needed
4. No unnecessary introductions or conclusions
=== CRITICAL RULES ===
- Extract information EXACTLY as provided in api_response
- Do NOT include technical URLs, IDs, or system codes in the response
- Do NOT show raw links or booking URLs to users
- Present information in natural, conversational language
- Do NOT use bullet points or technical formatting
- Write as if you're speaking to the patient directly
- If data is missing, state "المعلومات غير متوفرة" (Arabic) or "Information not available" (English)
- Convert technical data into human-readable format
- NEVER add translations or explanations in other languages
- NEVER include "Translated response" or similar phrases
- END your response immediately after providing the requested information
- Do NOT add any English translation when responding in Arabic
- Do NOT add any Arabic translation when responding in English
=== HUMAN-LIKE FORMATTING RULES ===
FOR ARABIC:
- Instead of "رابط الحجز: [URL]" → say "تم حجز موعدك بنجاح"
- Instead of "الأزمة: غير متوفرة" → omit or say "بدون أعراض محددة"
- Use natural sentences like "موعدك مع الدكتور [Name] يوم [Date] في تمام الساعة [Time]"
- Avoid technical terms and system language
FOR ENGLISH:
- Instead of "Booking URL: [link]" → say "Your appointment has been scheduled"
- Use natural sentences like "You have an appointment with Dr. [Name] on [Date] at [Time]"
- Avoid showing raw URLs, IDs, or technical data
=== QUALITY CHECKS ===
Before responding, verify:
✓ Response sounds natural and conversational
✓ No technical URLs, IDs, or system codes are shown
✓ Information is presented in human-friendly language
✓ Grammar is correct in the target language
✓ Response directly answers the user's question
✓ No bullet points or technical formatting
✓ Sounds like a helpful human assistant, not a system
Generate a response that is accurate, helpful, and professionally formatted.
=== FINAL INSTRUCTION ===
Respond ONLY in the requested language. Do NOT provide translations, explanations, or additional text in any other language. Stop immediately after answering the user's question.
""",
input_variables=["user_query", "api_response", "detected_language", "conversation_history"]
)
# Create chains
self.intent_chain = LLMChain(llm=self.llm, prompt=self.intent_classifier_template)
self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
self.api_response_chain = LLMChain(llm=self.llm, prompt=self.user_response_template)
def detect_language(self, text):
"""Detect language of the input text"""
if self.language_classifier and len(text.strip()) > 3:
try:
result = self.language_classifier(text)
detected_lang = result[0][0]['label']
confidence = result[0][0]['score']
if detected_lang in ['ar', 'arabic']:
return "arabic"
elif detected_lang in ['en', 'english']:
return "english"
elif confidence > 0.8:
return "english" # Default to English for unsupported languages
except:
pass
# Fallback: Basic Arabic detection
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
if arabic_pattern.search(text):
return "arabic"
return "english"
def analyze_sentiment(self, text):
"""Analyze sentiment of the text"""
if self.sentiment_analyzer and len(text.strip()) > 3:
try:
result = self.sentiment_analyzer(text)
return {
"sentiment": result[0]['label'],
"score": result[0]['score']
}
except:
pass
return {"sentiment": "NEUTRAL", "score": 0.5}
def extract_keywords(self, text):
"""Extract keywords from text"""
# Simple keyword extraction
words = re.findall(r'\b\w+\b', text.lower())
# Filter out common words and keep meaningful ones
stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
keywords = [w for w in words if len(w) > 3 and w not in stopwords]
return list(set(keywords))[:5] # Return top 5 unique keywords
def get_conversation_context(self):
"""Get recent conversation history as context"""
if not self.conversation_history:
return "No previous conversation"
context = []
for item in self.conversation_history[-3:]: # Last 3 exchanges
context.append(f"User: {item['user_message']}")
context.append(f"Bot: {item['bot_response'][:100]}...") # Truncate long responses
return " | ".join(context)
def add_to_history(self, user_message, bot_response, response_type):
"""Add exchange to conversation history"""
self.conversation_history.append({
'timestamp': datetime.now(),
'user_message': user_message,
'bot_response': bot_response,
'response_type': response_type
})
# Keep only recent history
if len(self.conversation_history) > self.max_history_length:
self.conversation_history = self.conversation_history[-self.max_history_length:]
def classify_intent(self, user_query, detected_language):
"""Classify if the user query requires API action or is conversational"""
try:
result = self.intent_chain.invoke({
"user_query": user_query,
"detected_language": detected_language,
"conversation_history": self.get_conversation_context(),
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2)
})
# Parse the JSON response
intent_text = result["text"]
# Clean and parse JSON
cleaned_response = re.sub(r'//.*?$', '', intent_text, flags=re.MULTILINE)
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
try:
intent_data = json.loads(cleaned_response)
return intent_data
except json.JSONDecodeError:
# Try to extract JSON from the response
json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
if json_match:
intent_data = json.loads(json_match.group(0))
return intent_data
else:
# Default classification if parsing fails
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": "Failed to parse LLM response",
"requires_backend": False
}
except Exception as e:
print(f"Error in intent classification: {e}")
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": f"Error in classification: {str(e)}",
"requires_backend": False
}
def handle_conversation(self, user_query, detected_language, sentiment_result):
"""Handle conversational responses"""
try:
result = self.conversation_chain.invoke({
"user_query": user_query,
"detected_language": detected_language,
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context()
})
return result["text"].strip()
except Exception as e:
# Fallback response
if detected_language == "arabic":
return "أعتذر، واجهت مشكلة في المعالجة. كيف يمكنني مساعدتك؟"
else:
return "I apologize, I encountered a processing issue. How can I help you?"
def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Make API call to backend with retry logic"""
endpoint_url = data.get('endpoint')
endpoint_method = data.get('method')
endpoint_params = data.get('params', {}).copy()
print('Sending the api request')
print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
# Inject patient_id if needed
if 'patient_id' in endpoint_params:
endpoint_params['patient_id'] = self.user_id
retries = 0
while retries < self.max_retries:
try:
if endpoint_method.upper() == 'GET':
response = requests.get(
self.BASE_URL + endpoint_url,
params=endpoint_params,
headers=self.headers,
timeout=10
)
elif endpoint_method.upper() in ['POST', 'PUT', 'DELETE']:
response = requests.request(
endpoint_method.upper(),
self.BASE_URL + endpoint_url,
json=endpoint_params,
headers=self.headers,
timeout=10
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
retries += 1
if retries >= self.max_retries:
return {
"error": "Backend API call failed after multiple retries",
"details": str(e),
"status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
}
time.sleep(self.retry_delay)
def handle_api_action(self, user_query, detected_language, sentiment_result, keywords):
"""Handle API-based actions"""
try:
# Route the query to determine API endpoint
router_result = self.router_chain.invoke({
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
"user_query": user_query,
"detected_language": detected_language,
"extracted_keywords": ", ".join(keywords),
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context()
})
# Parse router response
route_text = router_result["text"]
cleaned_response = re.sub(r'//.*?$', '', route_text, flags=re.MULTILINE)
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
try:
parsed_route = json.loads(cleaned_response)
except json.JSONDecodeError:
json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
if json_match:
parsed_route = json.loads(json_match.group(0))
else:
raise ValueError("Could not parse routing response")
print(f"🔍 Parsed route: {parsed_route}")
# Make backend API call
api_response = self.backend_call(parsed_route)
# Generate user-friendly response
user_response_result = self.api_response_chain.invoke({
"user_query": user_query,
"api_response": json.dumps(api_response, indent=2),
"detected_language": detected_language,
"conversation_history": self.get_conversation_context()
})
return {
"response": user_response_result["text"].strip(),
"api_data": api_response,
"routing_info": parsed_route
}
except Exception as e:
# Fallback error response
if detected_language == "arabic":
error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
else:
error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
return {
"response": error_msg,
"api_data": {"error": str(e)},
"routing_info": None
}
def chat(self, user_message: str) -> ChatResponse:
"""Main chat method that handles user messages"""
start_time = time.time()
# Check for exit commands
exit_commands = ['quit', 'exit', 'bye', 'خروج', 'وداعا', 'مع السلامة']
if user_message.lower().strip() in exit_commands:
return ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message="Goodbye! Take care of your health! / وداعاً! اعتن بصحتك!",
language="bilingual"
)
try:
# Language detection and analysis
detected_language = self.detect_language(user_message)
sentiment_result = self.analyze_sentiment(user_message)
keywords = self.extract_keywords(user_message)
print(f"🔍 Language: {detected_language} | Sentiment: {sentiment_result['sentiment']} | Keywords: {keywords}")
# Classify intent
intent_data = self.classify_intent(user_message, detected_language)
print(f"🎯 Intent: {intent_data['intent']} (confidence: {intent_data.get('confidence', 'N/A')})")
# Handle based on intent
if intent_data["intent"] == "API_ACTION" and intent_data.get("requires_backend", False):
# Handle API-based actions
print("🔗 Processing API action...")
action_result = self.handle_api_action(user_message, detected_language, sentiment_result, keywords)
response = ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="api_action",
message=action_result["response"],
api_call_made=True,
api_data=action_result["api_data"],
language=detected_language
)
else:
# Handle conversational responses
print("💬 Processing conversational response...")
conv_response = self.handle_conversation(user_message, detected_language, sentiment_result)
response = ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message=conv_response,
api_call_made=False,
language=detected_language
)
# Add to conversation history
self.add_to_history(user_message, response.message, response.response_type)
print(f"⏱️ Processing time: {time.time() - start_time:.2f}s")
return response
except Exception as e:
print(f"❌ Error in chat processing: {e}")
error_msg = "I apologize for the technical issue. Please try again. / أعتذر عن المشكلة التقنية. يرجى المحاولة مرة أخرى."
return ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message=error_msg,
api_call_made=False,
language="bilingual"
)
def start_interactive_chat(self):
"""Start an interactive chat session"""
print("🚀 Starting interactive chat session...")
while True:
try:
# Get user input
user_input = input("\n👤 You: ").strip()
if not user_input:
continue
# Process the message
print("🤖 Processing...")
response = self.chat(user_input)
# Display response
print(f"\n🏥 Healthcare Bot: {response.message}")
# Show additional info if API call was made
if response.api_call_made and response.api_data:
if "error" not in response.api_data:
print("✅ Successfully retrieved information from healthcare system")
else:
print("⚠️ There was an issue accessing the healthcare system")
# Check for exit
if "Goodbye" in response.message or "وداعاً" in response.message:
break
except KeyboardInterrupt:
print("\n\n👋 Chat session ended. Goodbye!")
break
except Exception as e:
print(f"\n❌ Unexpected error: {e}")
print("The chat session will continue...")
# Create a simple function to start the chatbot
# def start_healthcare_chatbot():
# """Initialize and start the healthcare chatbot"""
# try:
# chatbot = HealthcareChatbot()
# chatbot.start_interactive_chat()
# except Exception as e:
# print(f"Failed to start chatbot: {e}")
# print("Please check your Ollama installation and endpoint documentation.")
# Test the chatbot
# if __name__ == "__main__":
# You can test individual messages like this:
# chatbot = HealthcareChatbot()
# Test conversational message
# print("\n=== TESTING CONVERSATIONAL MESSAGE ===")
# conv_response = chatbot.chat("Hello, how are you today?")
# print(f"Response: {conv_response.message}")
# print(f"Type: {conv_response.response_type}")
# Test API action message
# print("\n=== TESTING API ACTION MESSAGE ===")
# api_response = chatbot.chat("I want to book an appointment tomorrow at 2 PM")
# print(f"Response: {api_response.message}")
# print(f"Type: {api_response.response_type}")
# print(f"API Called: {api_response.api_call_made}")
# Start interactive session (uncomment to run)
# start_healthcare_chatbot()
# Fast api section
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any, Optional
app = FastAPI(
title="Healthcare AI Assistant",
description="An AI-powered healthcare assistant that handles appointment booking and queries",
version="1.0.0"
)
# Initialize the AI agent
agent = HealthcareChatbot()
class QueryRequest(BaseModel):
query: str
class QueryResponse(BaseModel):
routing_info: Dict[str, Any]
api_response: Dict[str, Any]
user_friendly_response: str
detected_language: str
sentiment: Dict[str, Any]
@app.post("/query")
async def process_query(request: QueryRequest):
"""
Process a user query and return a response
"""
try:
response = agent.chat(request.query)
return response
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""
Health check endpoint
"""
return {"status": "healthy", "service": "healthcare-ai-assistant"}
@app.get("/")
async def root():
return {"message": "Hello World"}
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000) |