File size: 38,118 Bytes
b9333d0
 
 
 
 
 
b8f3012
b9333d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f3012
 
 
 
b9333d0
 
 
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
 
 
 
 
 
 
 
b8f3012
b9333d0
 
b8f3012
 
 
 
 
b9333d0
b8f3012
b9333d0
b8f3012
 
 
b9333d0
b8f3012
 
b9333d0
 
 
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
 
b8f3012
b9333d0
b8f3012
b9333d0
 
 
 
 
 
 
 
 
b8f3012
b9333d0
b8f3012
 
b9333d0
 
 
b8f3012
b9333d0
 
 
 
 
 
 
b8f3012
b9333d0
 
 
b8f3012
b9333d0
 
 
 
691b688
b9333d0
b8f3012
b9333d0
b8f3012
b9333d0
 
 
b8f3012
b9333d0
 
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
 
b8f3012
b9333d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f3012
b9333d0
 
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
b8f3012
 
 
 
b9333d0
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
b8f3012
 
 
 
b9333d0
b8f3012
 
 
 
 
 
 
 
 
 
b9333d0
b8f3012
 
 
b9333d0
b8f3012
 
b9333d0
b8f3012
b9333d0
 
b8f3012
 
b9333d0
 
b8f3012
 
 
 
b9333d0
 
 
 
b8f3012
 
b9333d0
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
 
 
b8f3012
b9333d0
 
b8f3012
b9333d0
 
b8f3012
 
 
 
 
b9333d0
 
b8f3012
b9333d0
 
b8f3012
b011019
 
 
b9333d0
b8f3012
 
 
b9333d0
 
 
 
 
 
 
 
 
 
 
b8f3012
 
 
b9333d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b011019
b8f3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9333d0
 
b8f3012
 
 
 
 
 
 
 
 
b9333d0
b8f3012
 
b9333d0
b8f3012
 
b9333d0
b8f3012
 
 
 
 
b9333d0
b8f3012
 
 
 
 
 
 
 
 
b9333d0
 
cdee10f
 
 
b9333d0
cdee10f
 
 
 
 
 
 
 
b8f3012
cdee10f
 
 
 
 
 
 
 
 
 
 
4f580f8
cdee10f
 
 
 
 
b8f3012
cdee10f
 
 
 
 
 
 
 
 
3483e5e
 
 
 
5f8f5f0
 
fd37d3e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
import re
import json
import requests
import traceback
import time
import os
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta

# Updated imports for pydantic
from pydantic import BaseModel, Field

# Updated imports for LangChain
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_ollama import OllamaLLM
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

# Enhanced HuggingFace imports for improved functionality
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import numpy as np

# Import endpoints documentation
from endpoints_documentation import endpoints_documentation

# Set environment variables for HuggingFace
# if os.name == 'posix' and os.uname().sysname == 'Darwin':  # Check if running on macOS
#     os.environ["HF_HOME"] = os.path.expanduser("~/Library/Caches/huggingface")
#     os.environ["TRANSFORMERS_CACHE"] = os.path.expanduser("~/Library/Caches/huggingface/transformers")
# else:
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"


class ChatMessage(BaseModel):
    """Data model for chat messages"""
    message_id: str = Field(..., description="Unique identifier for the message")
    user_id: str = Field(..., description="User identifier")
    message: str = Field(..., description="The user's message")
    timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
    language: str = Field(default="english", description="Detected language of the message")


class ChatResponse(BaseModel):
    """Data model for chatbot responses"""
    response_id: str = Field(..., description="Unique identifier for the response")
    response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
    message: str = Field(..., description="The chatbot's response message")
    api_call_made: bool = Field(default=False, description="Whether an API call was made")
    api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
    language: str = Field(default="english", description="Language of the response")
    timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")


class EndpointRequest(BaseModel):
    """Data model for API endpoint requests"""
    endpoint: str = Field(..., description="The API endpoint path to call")
    method: str = Field(..., description="The HTTP method to use (GET or POST)")
    params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for the API call")
    missing_required: List[str] = Field(default_factory=list, description="Any required parameters that are missing")


class HealthcareChatbot:
    def __init__(self):
        self.endpoints_documentation = endpoints_documentation
        self.ollama_base_url = "http://localhost:11434"
        self.model_name = "gemma3"
        self.BASE_URL = 'https://d623-105-196-69-205.ngrok-free.app'
        self.headers = {'Content-type': 'application/json'}
        self.user_id = '5c745974-f1e6-4a9d-b93f-0e0aa75c5b09'
        self.max_retries = 3
        self.retry_delay = 2
        
        # Store conversation history
        self.conversation_history = []
        self.max_history_length = 10  # Keep last 10 exchanges
        
        # Initialize components
        self._initialize_language_tools()
        self._initialize_llm()
        self._initialize_parsers_and_chains()
        self._initialize_date_parser()
        
        print("Healthcare Chatbot initialized successfully!")
        self._print_welcome_message()

    def _print_welcome_message(self):
        """Print welcome message in both languages"""
        print("\n" + "="*60)
        print("🏥 HEALTHCARE CHATBOT READY")
        print("="*60)
        print("English: Hello! I'm your healthcare assistant. I can help you with:")
        print("• Booking and managing appointments")
        print("• Finding hospital information")
        print("• Viewing your medical records")
        print("• General healthcare questions")
        print()
        print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
        print("• حجز وإدارة المواعيد")
        print("• العثور على معلومات المستشفى")
        print("• عرض سجلاتك الطبية")
        print("• الأسئلة الطبية العامة")
        print("="*60)
        print("Type 'quit' or 'خروج' to exit\n")

    def _initialize_language_tools(self):
        """Initialize language processing tools"""
        try:
            self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
            self.language_classifier = pipeline(
                "text-classification", 
                model="papluca/xlm-roberta-base-language-detection",
                top_k=1
            )
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
            )
            print("✓ Language processing models loaded successfully")
        except Exception as e:
            print(f"⚠ Warning: Some language models failed to load: {e}")
            self.language_classifier = None
            self.sentiment_analyzer = None

    def _initialize_date_parser(self):
        """Initialize date parsing model"""
        try:
            self.date_parser = pipeline(
                "token-classification",
                model="Jean-Baptiste/roberta-large-ner-english",
                aggregation_strategy="simple"
            )
        except Exception as e:
            print(f"⚠ Warning: Date parsing model failed to load: {e}")
            self.date_parser = None

    def _initialize_llm(self):
        """Initialize the LLM"""
        callbacks = [StreamingStdOutCallbackHandler()]
        self.llm = OllamaLLM(
            model=self.model_name,
            base_url=self.ollama_base_url,
            callbacks=callbacks,
            temperature=0.7,
            num_ctx=8192,
            top_p=0.9,
            request_timeout=60,
        )

    def _initialize_parsers_and_chains(self):
        """Initialize all prompt templates and chains"""
        self.json_parser = JsonOutputParser(pydantic_object=EndpointRequest)
        
        # Intent classification prompt
        self.intent_classifier_template = PromptTemplate(
            template="""
            You are an intent classifier for a healthcare chatbot. Analyze the user's message and determine if it requires an API call or is conversational.

            === ANALYSIS CONTEXT ===
            User Message: {user_query}
            Language: {detected_language}
            Conversation History: {conversation_history}

            === AVAILABLE API ENDPOINTS ===
            {endpoints_documentation}

            === CLASSIFICATION TASK ===
            Determine if the user's message requires:
            1. API_ACTION: Specific healthcare action (book appointment, view records, etc.)
            2. CONVERSATION: General chat, greeting, questions not requiring backend data

            === RESPONSE FORMAT ===
            Respond with EXACTLY this JSON structure:
            {{
                "intent": "API_ACTION" or "CONVERSATION",
                "confidence": 0.95,
                "reasoning": "Brief explanation of classification decision",
                "requires_backend": true or false
            }}

            === CLASSIFICATION RULES ===
            Choose API_ACTION for:
            - Booking, canceling, or viewing appointments
            - Requesting medical records or test results
            - Hospital information queries (locations, hours, etc.)
            - Medication management requests
            - Specific patient data requests

            Choose CONVERSATION for:
            - Greetings and pleasantries
            - General health advice (not patient-specific)
            - Explanations of medical terms
            - Small talk or casual questions
            - Questions about the chatbot itself

            Classify the intent:""",
            input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
        )

        # API routing prompt (reuse existing router_prompt_template)
        self.router_prompt_template = PromptTemplate(
            template="""
            You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.

                === ENDPOINT DOCUMENTATION ===
                {endpoints_documentation}

                === USER REQUEST ANALYSIS ===
                User Query: {user_query}
                Language: {detected_language}
                Keywords: {extracted_keywords}
                Sentiment: {sentiment_analysis}

                === ROUTING PROCESS ===
                Follow these steps in order:

                STEP 1: INTENT ANALYSIS
                - What is the user trying to accomplish?
                - What type of operation are they requesting? (create, read, update, delete, search, etc.)
                - What entity/resource are they working with?

                STEP 2: ENDPOINT MATCHING
                - Review each endpoint in the documentation
                - Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
                - Consider the HTTP method (GET for retrieval, POST for creation, etc.)
                - Verify the endpoint can handle the user's specific request

                STEP 3: PARAMETER EXTRACTION
                - Identify ALL required parameters from the endpoint documentation
                - Extract parameter values from the user query
                - Convert data types as needed (dates to ISO 8601, numbers to integers, etc.)
                - Set appropriate defaults for optional parameters if beneficial

                STEP 4: VALIDATION
                - Ensure ALL required parameters are provided or identified as missing
                - Verify parameter formats match documentation requirements
                - Check that the selected endpoint actually solves the user's problem

                === RESPONSE FORMAT ===
                Provide your analysis and decision in this exact JSON structure:

                {{
                    "reasoning": {{
                        "user_intent": "Brief description of what the user wants to accomplish",
                        "selected_endpoint": "Why this endpoint was chosen over others",
                        "parameter_mapping": "How user query maps to endpoint parameters"
                    }},
                    "endpoint": "/exact_endpoint_path_from_documentation",
                    "method": "HTTP_METHOD",
                    "params": {{
                        "required_param_1": "extracted_or_converted_value",
                        "required_param_2": "extracted_or_converted_value",
                        "optional_param": "value_if_applicable"
                    }},
                    "missing_required": ["list", "of", "missing", "required", "parameters"],
                    "confidence": 0.95
                }}

                === CRITICAL RULES ===
                1. ONLY select endpoints that exist in the provided documentation
                2. NEVER fabricate or assume endpoint parameters not in documentation
                3. ALL required parameters MUST be included or listed as missing
                4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
                5. If patient_id is required and not provided, add it to missing_required
                6. Match endpoints by PURPOSE, not just keywords in the path
                7. If multiple endpoints could work, choose the most specific one
                8. If no endpoint matches, set endpoint to null and explain in reasoning

                === EXAMPLES OF GOOD MATCHING ===
                - User wants "patient records" → Use patient retrieval endpoint, not general search
                - User wants to "schedule appointment" → Use appointment creation endpoint
                - User asks "what appointments today" → Use appointment listing with date filter
                - User wants to "update medication" → Use medication update endpoint with patient_id

                Think step by step and be precise with your endpoint selection and parameter extraction.:""",
            input_variables=["endpoints_documentation", "user_query", "detected_language", 
                            "extracted_keywords", "sentiment_analysis", "conversation_history"]
        )

        # Conversational response prompt
        self.conversation_template = PromptTemplate(
            template="""
            You are a friendly and professional healthcare chatbot assistant.

            === RESPONSE GUIDELINES ===
            - Respond ONLY in {detected_language}
            - Be helpful, empathetic, and professional
            - Keep responses concise but informative
            - Use appropriate medical terminology when needed
            - Maintain a caring and supportive tone

            === CONTEXT ===
            User Message: {user_query}
            Language: {detected_language}
            Sentiment: {sentiment_analysis}
            Conversation History: {conversation_history}

            === LANGUAGE-SPECIFIC INSTRUCTIONS ===
            
            FOR ARABIC RESPONSES:
            - Use Modern Standard Arabic (الفصحى)
            - Be respectful and formal as appropriate in Arabic culture
            - Use proper Arabic medical terminology
            - Keep sentences clear and grammatically correct

            FOR ENGLISH RESPONSES:
            - Use clear, professional English
            - Be warm and approachable
            - Use appropriate medical terminology

            === RESPONSE RULES ===
            1. Address the user's question or comment directly
            2. Provide helpful information when possible
            3. If you cannot help with something specific, explain what you CAN help with
            4. Never provide specific medical advice - always recommend consulting healthcare professionals
            5. Be encouraging and supportive
            6. Do NOT mix languages in your response
            7. End responses naturally without asking multiple questions

            Generate a helpful conversational response:""",
            input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
        )

        # API response formatting prompt (reuse existing user_response_template)
        self.user_response_template = PromptTemplate(
            template="""
            You are a professional healthcare assistant. Generate clear, accurate responses using EXACT data from the system.

            === STRICT REQUIREMENTS ===
            - Respond ONLY in {detected_language}
            - Use EXACT information from api_response - NO modifications
            - Keep responses SHORT, SIMPLE, and DIRECT
            - Use professional healthcare tone
            - NEVER mix languages or make up information

            === ORIGINAL REQUEST ===
            User Query: {user_query}
            User Sentiment: {sentiment_analysis}

            === SYSTEM DATA ===
            {api_response}

            === LANGUAGE-SPECIFIC FORMATTING ===

            FOR ARABIC RESPONSES:
            - Use Modern Standard Arabic (الفصحى)
            - Use Arabic numerals: ١، ٢، ٣، ٤، ٥، ٦، ٧، ٨، ٩، ١٠
            - Time format: "من الساعة ٨:٠٠ صباحاً إلى ٥:٠٠ مساءً"
            - Date format: "١٥ مايو ٢٠٢٥"
            - Use proper Arabic medical terminology
            - Keep sentences short and grammatically correct
            - Example format for hospitals:
            "مستشفى [الاسم] - العنوان: [العنوان الكامل] - أوقات العمل: من [الوقت] إلى [الوقت]"

            FOR ENGLISH RESPONSES:
            - Use clear, professional language
            - Time format: "8:00 AM to 5:00 PM"
            - Date format: "May 15, 2025"
            - Keep sentences concise and direct
            - Example format for hospitals:
            "[Hospital Name] - Address: [Full Address] - Hours: [Opening Time] to [Closing Time]"

            === RESPONSE STRUCTURE ===
            1. Direct answer to the user's question
            2. Essential details only (names, addresses, hours, contact info)
            3. Brief helpful note if needed
            4. No unnecessary introductions or conclusions

            === CRITICAL RULES ===
            - Extract information EXACTLY as provided in api_response
            - Do NOT include technical URLs, IDs, or system codes in the response
            - Do NOT show raw links or booking URLs to users
            - Present information in natural, conversational language
            - Do NOT use bullet points or technical formatting
            - Write as if you're speaking to the patient directly
            - If data is missing, state "المعلومات غير متوفرة" (Arabic) or "Information not available" (English)
            - Convert technical data into human-readable format
            - NEVER add translations or explanations in other languages
            - NEVER include "Translated response" or similar phrases
            - END your response immediately after providing the requested information
            - Do NOT add any English translation when responding in Arabic
            - Do NOT add any Arabic translation when responding in English

            === HUMAN-LIKE FORMATTING RULES ===
            FOR ARABIC:
            - Instead of "رابط الحجز: [URL]" → say "تم حجز موعدك بنجاح"
            - Instead of "الأزمة: غير متوفرة" → omit or say "بدون أعراض محددة"
            - Use natural sentences like "موعدك مع الدكتور [Name] يوم [Date] في تمام الساعة [Time]"
            - Avoid technical terms and system language

            FOR ENGLISH:
            - Instead of "Booking URL: [link]" → say "Your appointment has been scheduled"
            - Use natural sentences like "You have an appointment with Dr. [Name] on [Date] at [Time]"
            - Avoid showing raw URLs, IDs, or technical data

            === QUALITY CHECKS ===
            Before responding, verify:
            ✓ Response sounds natural and conversational
            ✓ No technical URLs, IDs, or system codes are shown
            ✓ Information is presented in human-friendly language
            ✓ Grammar is correct in the target language
            ✓ Response directly answers the user's question
            ✓ No bullet points or technical formatting
            ✓ Sounds like a helpful human assistant, not a system

            Generate a response that is accurate, helpful, and professionally formatted.

            === FINAL INSTRUCTION ===
            Respond ONLY in the requested language. Do NOT provide translations, explanations, or additional text in any other language. Stop immediately after answering the user's question.
            """,
            input_variables=["user_query", "api_response", "detected_language", "conversation_history"]
        )

        # Create chains
        self.intent_chain = LLMChain(llm=self.llm, prompt=self.intent_classifier_template)
        self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
        self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
        self.api_response_chain = LLMChain(llm=self.llm, prompt=self.user_response_template)

    def detect_language(self, text):
        """Detect language of the input text"""
        if self.language_classifier and len(text.strip()) > 3:
            try:
                result = self.language_classifier(text)
                detected_lang = result[0][0]['label']
                confidence = result[0][0]['score']
                
                if detected_lang in ['ar', 'arabic']:
                    return "arabic"
                elif detected_lang in ['en', 'english']:
                    return "english"
                elif confidence > 0.8:
                    return "english"  # Default to English for unsupported languages
            except:
                pass
        
        # Fallback: Basic Arabic detection
        arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
        if arabic_pattern.search(text):
            return "arabic"
        
        return "english"

    def analyze_sentiment(self, text):
        """Analyze sentiment of the text"""
        if self.sentiment_analyzer and len(text.strip()) > 3:
            try:
                result = self.sentiment_analyzer(text)
                return {
                    "sentiment": result[0]['label'],
                    "score": result[0]['score']
                }
            except:
                pass
        
        return {"sentiment": "NEUTRAL", "score": 0.5}

    def extract_keywords(self, text):
        """Extract keywords from text"""
        # Simple keyword extraction
        words = re.findall(r'\b\w+\b', text.lower())
        # Filter out common words and keep meaningful ones
        stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
        keywords = [w for w in words if len(w) > 3 and w not in stopwords]
        return list(set(keywords))[:5]  # Return top 5 unique keywords

    def get_conversation_context(self):
        """Get recent conversation history as context"""
        if not self.conversation_history:
            return "No previous conversation"
        
        context = []
        for item in self.conversation_history[-3:]:  # Last 3 exchanges
            context.append(f"User: {item['user_message']}")
            context.append(f"Bot: {item['bot_response'][:100]}...")  # Truncate long responses
        
        return " | ".join(context)

    def add_to_history(self, user_message, bot_response, response_type):
        """Add exchange to conversation history"""
        self.conversation_history.append({
            'timestamp': datetime.now(),
            'user_message': user_message,
            'bot_response': bot_response,
            'response_type': response_type
        })
        
        # Keep only recent history
        if len(self.conversation_history) > self.max_history_length:
            self.conversation_history = self.conversation_history[-self.max_history_length:]

    def classify_intent(self, user_query, detected_language):
        """Classify if the user query requires API action or is conversational"""
        try:
            result = self.intent_chain.invoke({
                "user_query": user_query,
                "detected_language": detected_language,
                "conversation_history": self.get_conversation_context(),
                "endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2)
            })
            
            # Parse the JSON response
            intent_text = result["text"]
            # Clean and parse JSON
            cleaned_response = re.sub(r'//.*?$', '', intent_text, flags=re.MULTILINE)
            cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
            cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
            
            try:
                intent_data = json.loads(cleaned_response)
                return intent_data
            except json.JSONDecodeError:
                # Try to extract JSON from the response
                json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
                if json_match:
                    intent_data = json.loads(json_match.group(0))
                    return intent_data
                else:
                    # Default classification if parsing fails
                    return {
                        "intent": "CONVERSATION",
                        "confidence": 0.5,
                        "reasoning": "Failed to parse LLM response",
                        "requires_backend": False
                    }
        except Exception as e:
            print(f"Error in intent classification: {e}")
            return {
                "intent": "CONVERSATION",
                "confidence": 0.5,
                "reasoning": f"Error in classification: {str(e)}",
                "requires_backend": False
            }

    def handle_conversation(self, user_query, detected_language, sentiment_result):
        """Handle conversational responses"""
        try:
            result = self.conversation_chain.invoke({
                "user_query": user_query,
                "detected_language": detected_language,
                "sentiment_analysis": json.dumps(sentiment_result),
                "conversation_history": self.get_conversation_context()
            })
            
            return result["text"].strip()
            
        except Exception as e:
            # Fallback response
            if detected_language == "arabic":
                return "أعتذر، واجهت مشكلة في المعالجة. كيف يمكنني مساعدتك؟"
            else:
                return "I apologize, I encountered a processing issue. How can I help you?"

    def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Make API call to backend with retry logic"""
        endpoint_url = data.get('endpoint')
        endpoint_method = data.get('method')
        endpoint_params = data.get('params', {}).copy()

        print('Sending the api request')
        print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
        
        # Inject patient_id if needed
        if 'patient_id' in endpoint_params:
            endpoint_params['patient_id'] = self.user_id
        
        retries = 0
        while retries < self.max_retries:
            try:
                if endpoint_method.upper() == 'GET':
                    response = requests.get(
                        self.BASE_URL + endpoint_url,
                        params=endpoint_params,
                        headers=self.headers,
                        timeout=10
                    )
                elif endpoint_method.upper() in ['POST', 'PUT', 'DELETE']:
                    response = requests.request(
                        endpoint_method.upper(),
                        self.BASE_URL + endpoint_url,
                        json=endpoint_params,
                        headers=self.headers,
                        timeout=10
                    )
                
                response.raise_for_status()
                return response.json()
                
            except requests.exceptions.RequestException as e:
                retries += 1
                if retries >= self.max_retries:
                    return {
                        "error": "Backend API call failed after multiple retries",
                        "details": str(e),
                        "status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
                    }
                
                time.sleep(self.retry_delay)

    def handle_api_action(self, user_query, detected_language, sentiment_result, keywords):
        """Handle API-based actions"""
        try:
            # Route the query to determine API endpoint
            router_result = self.router_chain.invoke({
                "endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
                "user_query": user_query,
                "detected_language": detected_language,
                "extracted_keywords": ", ".join(keywords),
                "sentiment_analysis": json.dumps(sentiment_result),
                "conversation_history": self.get_conversation_context()
            })
            
            # Parse router response
            route_text = router_result["text"]
            cleaned_response = re.sub(r'//.*?$', '', route_text, flags=re.MULTILINE)
            cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
            cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
            
            try:
                parsed_route = json.loads(cleaned_response)
            except json.JSONDecodeError:
                json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
                if json_match:
                    parsed_route = json.loads(json_match.group(0))
                else:
                    raise ValueError("Could not parse routing response")
            
            print(f"🔍 Parsed route: {parsed_route}")
            # Make backend API call
            api_response = self.backend_call(parsed_route)
            
            # Generate user-friendly response
            user_response_result = self.api_response_chain.invoke({
                "user_query": user_query,
                "api_response": json.dumps(api_response, indent=2),
                "detected_language": detected_language,
                "conversation_history": self.get_conversation_context()
            })
            
            return {
                "response": user_response_result["text"].strip(),
                "api_data": api_response,
                "routing_info": parsed_route
            }
            
        except Exception as e:
            # Fallback error response
            if detected_language == "arabic":
                error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
            else:
                error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
            
            return {
                "response": error_msg,
                "api_data": {"error": str(e)},
                "routing_info": None
            }

    def chat(self, user_message: str) -> ChatResponse:
        """Main chat method that handles user messages"""
        start_time = time.time()
        
        # Check for exit commands
        exit_commands = ['quit', 'exit', 'bye', 'خروج', 'وداعا', 'مع السلامة']
        if user_message.lower().strip() in exit_commands:
            return ChatResponse(
                response_id=f"resp_{int(time.time())}",
                response_type="conversation",
                message="Goodbye! Take care of your health! / وداعاً! اعتن بصحتك!",
                language="bilingual"
            )
        
        try:
            # Language detection and analysis
            detected_language = self.detect_language(user_message)
            sentiment_result = self.analyze_sentiment(user_message)
            keywords = self.extract_keywords(user_message)
            
            print(f"🔍 Language: {detected_language} | Sentiment: {sentiment_result['sentiment']} | Keywords: {keywords}")
            
            # Classify intent
            intent_data = self.classify_intent(user_message, detected_language)
            print(f"🎯 Intent: {intent_data['intent']} (confidence: {intent_data.get('confidence', 'N/A')})")
            
            # Handle based on intent
            if intent_data["intent"] == "API_ACTION" and intent_data.get("requires_backend", False):
                # Handle API-based actions
                print("🔗 Processing API action...")
                action_result = self.handle_api_action(user_message, detected_language, sentiment_result, keywords)
                
                response = ChatResponse(
                    response_id=f"resp_{int(time.time())}",
                    response_type="api_action",
                    message=action_result["response"],
                    api_call_made=True,
                    api_data=action_result["api_data"],
                    language=detected_language
                )
                
            else:
                # Handle conversational responses
                print("💬 Processing conversational response...")
                conv_response = self.handle_conversation(user_message, detected_language, sentiment_result)
                
                response = ChatResponse(
                    response_id=f"resp_{int(time.time())}",
                    response_type="conversation",
                    message=conv_response,
                    api_call_made=False,
                    language=detected_language
                )
            
            # Add to conversation history
            self.add_to_history(user_message, response.message, response.response_type)
            
            print(f"⏱️ Processing time: {time.time() - start_time:.2f}s")
            return response
            
        except Exception as e:
            print(f"❌ Error in chat processing: {e}")
            error_msg = "I apologize for the technical issue. Please try again. / أعتذر عن المشكلة التقنية. يرجى المحاولة مرة أخرى."
            
            return ChatResponse(
                response_id=f"resp_{int(time.time())}",
                response_type="conversation",
                message=error_msg,
                api_call_made=False,
                language="bilingual"
            )

    def start_interactive_chat(self):
        """Start an interactive chat session"""
        print("🚀 Starting interactive chat session...")
        
        while True:
            try:
                # Get user input
                user_input = input("\n👤 You: ").strip()
                
                if not user_input:
                    continue
                
                # Process the message
                print("🤖 Processing...")
                response = self.chat(user_input)
                
                # Display response
                print(f"\n🏥 Healthcare Bot: {response.message}")
                
                # Show additional info if API call was made
                if response.api_call_made and response.api_data:
                    if "error" not in response.api_data:
                        print("✅ Successfully retrieved information from healthcare system")
                    else:
                        print("⚠️ There was an issue accessing the healthcare system")
                
                # Check for exit
                if "Goodbye" in response.message or "وداعاً" in response.message:
                    break
                    
            except KeyboardInterrupt:
                print("\n\n👋 Chat session ended. Goodbye!")
                break
            except Exception as e:
                print(f"\n❌ Unexpected error: {e}")
                print("The chat session will continue...")


# Create a simple function to start the chatbot
# def start_healthcare_chatbot():
#     """Initialize and start the healthcare chatbot"""
#     try:
#         chatbot = HealthcareChatbot()
#         chatbot.start_interactive_chat()
#     except Exception as e:
#         print(f"Failed to start chatbot: {e}")
#         print("Please check your Ollama installation and endpoint documentation.")


# Test the chatbot
# if __name__ == "__main__":
    # You can test individual messages like this:
    # chatbot = HealthcareChatbot()
    
    # Test conversational message
    # print("\n=== TESTING CONVERSATIONAL MESSAGE ===")
    # conv_response = chatbot.chat("Hello, how are you today?")
    # print(f"Response: {conv_response.message}")
    # print(f"Type: {conv_response.response_type}")
    
    # Test API action message
    # print("\n=== TESTING API ACTION MESSAGE ===")
    # api_response = chatbot.chat("I want to book an appointment tomorrow at 2 PM")
    # print(f"Response: {api_response.message}")
    # print(f"Type: {api_response.response_type}")
    # print(f"API Called: {api_response.api_call_made}")
    
    # Start interactive session (uncomment to run)
    # start_healthcare_chatbot()

# Fast api section 
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any, Optional


app = FastAPI(
    title="Healthcare AI Assistant",
    description="An AI-powered healthcare assistant that handles appointment booking and queries",
    version="1.0.0"
)

# Initialize the AI agent
agent = HealthcareChatbot()

class QueryRequest(BaseModel):
    query: str

class QueryResponse(BaseModel):
    routing_info: Dict[str, Any]
    api_response: Dict[str, Any]
    user_friendly_response: str
    detected_language: str
    sentiment: Dict[str, Any]

@app.post("/query")
async def process_query(request: QueryRequest):
    """
    Process a user query and return a response
    """
    try:
        response = agent.chat(request.query)
        return response
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """
    Health check endpoint
    """
    return {"status": "healthy", "service": "healthcare-ai-assistant"}

@app.get("/")
async def root():
    return {"message": "Hello World"}

# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=8000)