Spaces:
Running
Running
Abaryan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,8 @@ import random
|
|
6 |
import re
|
7 |
|
8 |
# Load model and tokenizer
|
9 |
-
model_name = "rgb2gbr/GRPO_BioMedmcqa_Qwen2.5-0.5B"
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
|
@@ -49,7 +50,7 @@ def extract_answer(prediction: str) -> tuple:
|
|
49 |
|
50 |
def predict(question: str, option_a: str, option_b: str, option_c: str, option_d: str,
|
51 |
correct_option: int = None, explanation: str = None,
|
52 |
-
temperature: float = 0.6, top_p: float = 0.9, max_tokens: int =
|
53 |
# Format the prompt
|
54 |
prompt = f"Question: {question}\n\nOptions:\nA. {option_a}\nB. {option_b}\nC. {option_c}\nD. {option_d}\n\nAnswer:"
|
55 |
|
@@ -120,7 +121,7 @@ with gr.Blocks(title="Medical MCQ Predictor") as demo:
|
|
120 |
max_tokens = gr.Slider(
|
121 |
minimum=10,
|
122 |
maximum=512,
|
123 |
-
value=
|
124 |
step=32,
|
125 |
label="Max Tokens",
|
126 |
info="Maximum length of the generated response"
|
|
|
6 |
import re
|
7 |
|
8 |
# Load model and tokenizer
|
9 |
+
# model_name = "rgb2gbr/GRPO_BioMedmcqa_Qwen2.5-0.5B"
|
10 |
+
model_name = "rgb2gbr/BioXP-0.5B-MedMCQA"
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
|
|
50 |
|
51 |
def predict(question: str, option_a: str, option_b: str, option_c: str, option_d: str,
|
52 |
correct_option: int = None, explanation: str = None,
|
53 |
+
temperature: float = 0.6, top_p: float = 0.9, max_tokens: int = 20):
|
54 |
# Format the prompt
|
55 |
prompt = f"Question: {question}\n\nOptions:\nA. {option_a}\nB. {option_b}\nC. {option_c}\nD. {option_d}\n\nAnswer:"
|
56 |
|
|
|
121 |
max_tokens = gr.Slider(
|
122 |
minimum=10,
|
123 |
maximum=512,
|
124 |
+
value=20,
|
125 |
step=32,
|
126 |
label="Max Tokens",
|
127 |
info="Maximum length of the generated response"
|