Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| # Set up device: use GPU if available, else CPU. | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Load the fine-tuned model and tokenizer. | |
| model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned" | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) | |
| tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") | |
| # For CPU inference, convert the model to FP32 for better compatibility. | |
| if device.type == "cpu": | |
| model = model.float() | |
| # Optionally compile the model for speed improvements (requires PyTorch 2.0+). | |
| try: | |
| model = torch.compile(model) | |
| except Exception as e: | |
| print("torch.compile optimization failed:", e) | |
| def generate_sql(context: str, query: str) -> str: | |
| """ | |
| Generates a SQL query given the provided context and natural language query. | |
| Constructs a prompt from the inputs, then performs deterministic generation | |
| using beam search with repetition handling. | |
| """ | |
| prompt = f"""Context: | |
| {context} | |
| Query: | |
| {query} | |
| Response: | |
| """ | |
| # Tokenize the prompt with truncation and max length; move to device. | |
| inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device) | |
| # Ensure the decoder start token is set. | |
| if model.config.decoder_start_token_id is None: | |
| model.config.decoder_start_token_id = tokenizer.pad_token_id | |
| # Generate SQL output using no_grad for optimized CPU usage. | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| input_ids=inputs["input_ids"], | |
| decoder_start_token_id=model.config.decoder_start_token_id, | |
| max_new_tokens=100, | |
| temperature=0.1, | |
| num_beams=5, | |
| repetition_penalty=1.2, | |
| early_stopping=True, | |
| ) | |
| # Decode and clean the generated SQL statement. | |
| generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
| generated_sql = generated_sql.split(";")[0].strip() + ";" # Keep only the first valid SQL query | |
| return generated_sql | |
| # Guide text with detailed instructions and an example. | |
| guide_text = """ | |
| **Overview:** | |
| This app uses a fine-tuned FLAN-T5 model to generate SQL queries based on your inputs. | |
| **How to Use:** | |
| - **Context:** Enter your database schema (table definitions, DDL statements, sample data). | |
| - **Query:** Enter a natural language query describing the desired SQL operation. | |
| - Click **Generate SQL** to see the model-generated SQL query. | |
| **Example:** | |
| - **Context:** | |
| CREATE TABLE students (id INT PRIMARY KEY, name VARCHAR(100), age INT, grade CHAR(1)); INSERT INTO students (id, name, age, grade) VALUES (1, 'Alice', 14, 'A'), (2, 'Bob', 15, 'B'); | |
| - **Query:** | |
| Retrieve the names of students who are 15 years old. | |
| The generated SQL might look like: | |
| SELECT name FROM students WHERE age = 15; | |
| """ | |
| # Create Gradio interface. | |
| iface = gr.Interface( | |
| fn=generate_sql, | |
| inputs=[ | |
| gr.Textbox(lines=8, label="Context", placeholder="Enter table schema, sample data, etc."), | |
| gr.Textbox(lines=2, label="Query", placeholder="Enter your natural language query here...") | |
| ], | |
| outputs="text", | |
| title="Text-to-SQL Generator", | |
| description=guide_text, | |
| theme="default", # Use default theme to avoid loading warnings | |
| flagging_mode="never" # Use flagging_mode instead of deprecated allow_flagging | |
| ) | |
| iface.launch() | |