File size: 6,682 Bytes
f2a2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5efcfe4
f2a2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24dfd0b
3ee0598
f2a2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces

# Initialize the model pipeline
print("Loading MedGemma model...")
pipe = pipeline(
    "image-text-to-text",
    model="google/medgemma-4b-it",
    torch_dtype=torch.bfloat16,
    device="cuda" if torch.cuda.is_available() else "cpu",
)
print("Model loaded successfully!")

@spaces.GPU()
def analyze_xray(image, custom_prompt=None):
    """
    Analyze X-ray image using MedGemma model
    """
    if image is None:
        return "Please upload an X-ray image first."
    
    try:
        # Use custom prompt if provided, otherwise use default
        if custom_prompt and custom_prompt.strip():
            prompt_text = custom_prompt.strip()
        else:
            prompt_text = "Describe this X-ray in detail, including any abnormalities or notable findings."
        
        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are an expert radiologist with years of experience in interpreting medical images."}]
            },
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt_text},
                    {"type": "image", "image": image},
                ]
            }
        ]
        
        # Generate analysis
        output = pipe(text=messages, max_new_tokens=300)
        result = output[0]["generated_text"][-1]["content"]
        
        return result
        
    except Exception as e:
        return f"Error analyzing image: {str(e)}"

def load_sample_image():
    """Load the sample X-ray image if it exists"""
    sample_path = "./images/Chest_Xray_PA_3-8-2010.png"
    if os.path.exists(sample_path):
        return Image.open(sample_path)
    return None

# Create Gradio interface
with gr.Blocks(
    theme=gr.themes.Soft(),
    title="AI X-ray Analysis System",
    css="""
    .header {
        text-align: center;
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 2rem;
        border-radius: 10px;
        margin-bottom: 2rem;
    }
    .warning {
        background-color: #fff3cd;
        border: 1px solid #ffeaa7;
        border-radius: 8px;
        padding: 1rem;
        margin: 1rem 0;
        color: #856404;
    }
    .gradio-container {
        max-width: 1200px;
        margin: auto;
    }
    """
) as demo:
    
    # Header
    gr.HTML("""
        <div class="header">
            <h1>🩻 AI X-ray Analysis System</h1>
            <p>Advanced medical image analysis powered by Google's MedGemma AI</p>
        </div>
    """)
    
    # Warning disclaimer
    gr.HTML("""
        <div class="warning">
            <strong>⚠️ Medical Disclaimer:</strong> This AI tool is for educational and research purposes only. 
            It should not be used as a substitute for professional medical diagnosis or treatment. 
            Always consult qualified healthcare professionals for medical advice.
        </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“€ Upload X-ray Image")
            
            # Image input
            image_input = gr.Image(
                label="X-ray Image",
                type="pil",
                height=400,
                sources=["upload", "clipboard"]
            )
            
            # Sample image button
            sample_btn = gr.Button(
                "πŸ“‹ Load Sample Image", 
                variant="secondary",
                size="sm"
            )
            
            # Custom prompt input
            gr.Markdown("### πŸ’¬ Custom Analysis Prompt (Optional)")
            custom_prompt = gr.Textbox(
                label="Custom Prompt",
                placeholder="Enter specific questions about the X-ray (e.g., 'Focus on the heart area' or 'Look for signs of pneumonia')",
                value = "Describe this X-ray",
                lines=3,
                max_lines=5
            )
            
            # Analyze button
            analyze_btn = gr.Button(
                "πŸ” Analyze X-ray", 
                variant="primary",
                size="lg"
            )
        
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“Š Analysis Results")
            
            # Output text
            output_text = gr.Textbox(
                label="AI Analysis Report",
                lines=28,
                max_lines=100,
                show_copy_button=True,
                placeholder="Upload an X-ray image and click 'Analyze X-ray' to see the AI analysis results here..."
            )
            
            # Quick action buttons
            with gr.Row():
                clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary", size="sm")
                copy_btn = gr.Button("πŸ“‹ Copy Results", variant="secondary", size="sm")
    
    # Example prompts section
    gr.Markdown("### πŸ’‘ Example Prompts")
    with gr.Row():
        example_prompts = [
            "Describe this X-ray in detail, including any abnormalities or notable findings.",
            "Focus on the lung fields and identify any signs of infection or disease.",
            "Examine the heart size and shape. Is the cardiac silhouette normal?",
            "Look for any signs of fractures or bone abnormalities.",
            "Analyze the overall image quality and positioning."
        ]
        
        for i, prompt in enumerate(example_prompts):
            gr.Button(
                f"Example {i+1}",
                size="sm"
            ).click(
                lambda p=prompt: p,
                outputs=custom_prompt
            )
    
    # Event handlers
    def clear_all():
        return None, "", ""
    
    sample_btn.click(
        fn=load_sample_image,
        outputs=image_input
    )
    
    analyze_btn.click(
        fn=analyze_xray,
        inputs=[image_input, custom_prompt],
        outputs=output_text
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[image_input, custom_prompt, output_text]
    )
    
    # Auto-analyze when image is uploaded (optional)
    image_input.change(
        fn=lambda img: analyze_xray(img) if img is not None else "",
        inputs=image_input,
        outputs=output_text
    )

# Launch the app
if __name__ == "__main__":
    print("Starting Gradio interface...")
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,  # Set to True if you want to create a public link
        show_error=True,
        favicon_path=None
    )