Update app.py
Browse files
app.py
CHANGED
@@ -14,24 +14,24 @@ import datetime
|
|
14 |
import zipfile
|
15 |
from gradio.routes import Request
|
16 |
|
17 |
-
#
|
18 |
ADMIN_KEY = "Diabetes_Detection"
|
19 |
|
20 |
-
#
|
21 |
device = torch.device("cpu")
|
22 |
|
23 |
-
#
|
24 |
model = models.resnet50(weights=None)
|
25 |
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
26 |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
|
27 |
model.to(device)
|
28 |
model.eval()
|
29 |
|
30 |
-
#
|
31 |
target_layer = model.layer4[-1]
|
32 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
33 |
|
34 |
-
#
|
35 |
transform = transforms.Compose([
|
36 |
transforms.Resize((224, 224)),
|
37 |
transforms.ToTensor(),
|
@@ -39,7 +39,7 @@ transform = transforms.Compose([
|
|
39 |
[0.229, 0.224, 0.225])
|
40 |
])
|
41 |
|
42 |
-
#
|
43 |
image_folder = "collected_images"
|
44 |
os.makedirs(image_folder, exist_ok=True)
|
45 |
|
@@ -49,7 +49,7 @@ if not os.path.exists(csv_log_path):
|
|
49 |
writer = csv.writer(f)
|
50 |
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
|
51 |
|
52 |
-
#
|
53 |
def predict_retinopathy(image):
|
54 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
55 |
img = image.convert("RGB").resize((224, 224))
|
@@ -70,19 +70,18 @@ def predict_retinopathy(image):
|
|
70 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
71 |
cam_pil = Image.fromarray(cam_image)
|
72 |
|
73 |
-
# Save
|
74 |
image_filename = f"{timestamp}_{label.replace(' ', '_')}.png"
|
75 |
image_path = os.path.join(image_folder, image_filename)
|
76 |
image.save(image_path)
|
77 |
|
78 |
-
# Log prediction
|
79 |
with open(csv_log_path, mode="a", newline="") as f:
|
80 |
writer = csv.writer(f)
|
81 |
writer.writerow([timestamp, image_filename, label, f"{confidence:.4f}"])
|
82 |
|
83 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
84 |
|
85 |
-
#
|
86 |
def download_csv():
|
87 |
return csv_log_path
|
88 |
|
@@ -95,14 +94,13 @@ def download_dataset_zip():
|
|
95 |
zipf.write(fpath, arcname=os.path.join("images", fname))
|
96 |
return zip_filename
|
97 |
|
98 |
-
#
|
99 |
def is_admin(request: Request):
|
100 |
-
|
101 |
-
return query_params.get("admin", "") == ADMIN_KEY
|
102 |
|
103 |
-
#
|
104 |
with gr.Blocks() as demo:
|
105 |
-
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM
|
106 |
|
107 |
with gr.Row():
|
108 |
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
@@ -117,32 +115,26 @@ with gr.Blocks() as demo:
|
|
117 |
outputs=[cam_output, prediction_output]
|
118 |
)
|
119 |
|
|
|
120 |
with gr.Column(visible=False) as admin_section:
|
121 |
-
gr.Markdown("### 🔐
|
122 |
with gr.Row():
|
123 |
download_csv_btn = gr.Button("📄 Download CSV Log")
|
124 |
-
download_zip_btn = gr.Button("📦 Download
|
125 |
csv_file = gr.File()
|
126 |
zip_file = gr.File()
|
127 |
|
128 |
-
#
|
129 |
demo.load(
|
130 |
lambda req: gr.update(visible=True) if is_admin(req) else gr.update(visible=False),
|
131 |
-
inputs=
|
132 |
outputs=admin_section,
|
133 |
-
queue=False
|
|
|
134 |
)
|
135 |
|
136 |
-
download_csv_btn.click(
|
137 |
-
|
138 |
-
inputs=[],
|
139 |
-
outputs=csv_file
|
140 |
-
)
|
141 |
-
|
142 |
-
download_zip_btn.click(
|
143 |
-
fn=download_dataset_zip,
|
144 |
-
inputs=[],
|
145 |
-
outputs=zip_file
|
146 |
-
)
|
147 |
|
148 |
demo.launch()
|
|
|
|
14 |
import zipfile
|
15 |
from gradio.routes import Request
|
16 |
|
17 |
+
# 🔐 Secret key
|
18 |
ADMIN_KEY = "Diabetes_Detection"
|
19 |
|
20 |
+
# Device
|
21 |
device = torch.device("cpu")
|
22 |
|
23 |
+
# Load model
|
24 |
model = models.resnet50(weights=None)
|
25 |
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
26 |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
|
27 |
model.to(device)
|
28 |
model.eval()
|
29 |
|
30 |
+
# Grad-CAM setup
|
31 |
target_layer = model.layer4[-1]
|
32 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
33 |
|
34 |
+
# Preprocessing
|
35 |
transform = transforms.Compose([
|
36 |
transforms.Resize((224, 224)),
|
37 |
transforms.ToTensor(),
|
|
|
39 |
[0.229, 0.224, 0.225])
|
40 |
])
|
41 |
|
42 |
+
# Folders
|
43 |
image_folder = "collected_images"
|
44 |
os.makedirs(image_folder, exist_ok=True)
|
45 |
|
|
|
49 |
writer = csv.writer(f)
|
50 |
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
|
51 |
|
52 |
+
# 🔍 Prediction
|
53 |
def predict_retinopathy(image):
|
54 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
55 |
img = image.convert("RGB").resize((224, 224))
|
|
|
70 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
71 |
cam_pil = Image.fromarray(cam_image)
|
72 |
|
73 |
+
# Save image + log
|
74 |
image_filename = f"{timestamp}_{label.replace(' ', '_')}.png"
|
75 |
image_path = os.path.join(image_folder, image_filename)
|
76 |
image.save(image_path)
|
77 |
|
|
|
78 |
with open(csv_log_path, mode="a", newline="") as f:
|
79 |
writer = csv.writer(f)
|
80 |
writer.writerow([timestamp, image_filename, label, f"{confidence:.4f}"])
|
81 |
|
82 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
83 |
|
84 |
+
# 📁 Admin downloads
|
85 |
def download_csv():
|
86 |
return csv_log_path
|
87 |
|
|
|
94 |
zipf.write(fpath, arcname=os.path.join("images", fname))
|
95 |
return zip_filename
|
96 |
|
97 |
+
# ✅ Admin check (query param)
|
98 |
def is_admin(request: Request):
|
99 |
+
return request.query_params.get("admin") == ADMIN_KEY
|
|
|
100 |
|
101 |
+
# 🌐 App
|
102 |
with gr.Blocks() as demo:
|
103 |
+
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM")
|
104 |
|
105 |
with gr.Row():
|
106 |
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
|
|
115 |
outputs=[cam_output, prediction_output]
|
116 |
)
|
117 |
|
118 |
+
# 🔒 Hidden admin section
|
119 |
with gr.Column(visible=False) as admin_section:
|
120 |
+
gr.Markdown("### 🔐 Private Downloads (Rodiyah Only)")
|
121 |
with gr.Row():
|
122 |
download_csv_btn = gr.Button("📄 Download CSV Log")
|
123 |
+
download_zip_btn = gr.Button("📦 Download Dataset ZIP")
|
124 |
csv_file = gr.File()
|
125 |
zip_file = gr.File()
|
126 |
|
127 |
+
# ✅ Reveal only if correct ?admin=Diabetes_Detection in URL
|
128 |
demo.load(
|
129 |
lambda req: gr.update(visible=True) if is_admin(req) else gr.update(visible=False),
|
130 |
+
inputs=[],
|
131 |
outputs=admin_section,
|
132 |
+
queue=False,
|
133 |
+
api_name=False,
|
134 |
)
|
135 |
|
136 |
+
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
|
137 |
+
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
demo.launch()
|
140 |
+
|