Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,9 @@ from pytorch_grad_cam import GradCAM
|
|
8 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
9 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
10 |
|
|
|
11 |
import csv
|
12 |
import datetime
|
13 |
-
import os
|
14 |
|
15 |
# Set device
|
16 |
device = torch.device("cpu")
|
@@ -26,7 +26,7 @@ model.eval()
|
|
26 |
target_layer = model.layer4[-1]
|
27 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
28 |
|
29 |
-
#
|
30 |
transform = transforms.Compose([
|
31 |
transforms.Resize((224, 224)),
|
32 |
transforms.ToTensor(),
|
@@ -34,18 +34,15 @@ transform = transforms.Compose([
|
|
34 |
[0.229, 0.224, 0.225])
|
35 |
])
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
|
|
|
40 |
def log_prediction(filename, prediction, confidence):
|
41 |
timestamp = datetime.datetime.now().isoformat()
|
42 |
row = [timestamp, filename, prediction, f"{confidence:.4f}"]
|
43 |
-
|
44 |
-
print("⏺
|
45 |
-
|
46 |
-
with open(log_path, mode='a', newline='') as file:
|
47 |
-
writer = csv.writer(file)
|
48 |
-
writer.writerow(row)
|
49 |
|
50 |
# Prediction function
|
51 |
def predict_retinopathy(image):
|
@@ -66,21 +63,46 @@ def predict_retinopathy(image):
|
|
66 |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
|
67 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
68 |
|
69 |
-
#
|
70 |
filename = getattr(image, "filename", "uploaded_image")
|
71 |
log_prediction(filename, label, confidence)
|
72 |
|
73 |
cam_pil = Image.fromarray(cam_image)
|
74 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
9 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
10 |
|
11 |
+
import io
|
12 |
import csv
|
13 |
import datetime
|
|
|
14 |
|
15 |
# Set device
|
16 |
device = torch.device("cpu")
|
|
|
26 |
target_layer = model.layer4[-1]
|
27 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
28 |
|
29 |
+
# Preprocessing
|
30 |
transform = transforms.Compose([
|
31 |
transforms.Resize((224, 224)),
|
32 |
transforms.ToTensor(),
|
|
|
34 |
[0.229, 0.224, 0.225])
|
35 |
])
|
36 |
|
37 |
+
# In-memory log list
|
38 |
+
prediction_log = [["timestamp", "image_name", "prediction", "confidence"]]
|
39 |
|
40 |
+
# Logging function
|
41 |
def log_prediction(filename, prediction, confidence):
|
42 |
timestamp = datetime.datetime.now().isoformat()
|
43 |
row = [timestamp, filename, prediction, f"{confidence:.4f}"]
|
44 |
+
prediction_log.append(row)
|
45 |
+
print("⏺ Logged:", row)
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Prediction function
|
48 |
def predict_retinopathy(image):
|
|
|
63 |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
|
64 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
65 |
|
66 |
+
# Log it
|
67 |
filename = getattr(image, "filename", "uploaded_image")
|
68 |
log_prediction(filename, label, confidence)
|
69 |
|
70 |
cam_pil = Image.fromarray(cam_image)
|
71 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
72 |
|
73 |
+
# CSV download function
|
74 |
+
def download_logs():
|
75 |
+
output = io.StringIO()
|
76 |
+
writer = csv.writer(output)
|
77 |
+
writer.writerows(prediction_log)
|
78 |
+
output.seek(0)
|
79 |
+
return gr.File.update(value=io.BytesIO(output.getvalue().encode()), filename="prediction_logs.csv")
|
80 |
+
|
81 |
+
# Build the UI with Gradio Blocks
|
82 |
+
with gr.Blocks() as demo:
|
83 |
+
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM & Logging")
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
87 |
+
cam_output = gr.Image(type="pil", label="Grad-CAM")
|
88 |
+
|
89 |
+
prediction_output = gr.Text(label="Prediction")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
run_button = gr.Button("Submit")
|
93 |
+
download_button = gr.Button("📥 Download Logs")
|
94 |
+
download_file = gr.File(label="Your Log File", interactive=False)
|
95 |
+
|
96 |
+
run_button.click(
|
97 |
+
fn=predict_retinopathy,
|
98 |
+
inputs=image_input,
|
99 |
+
outputs=[cam_output, prediction_output]
|
100 |
+
)
|
101 |
+
|
102 |
+
download_button.click(
|
103 |
+
fn=download_logs,
|
104 |
+
inputs=[],
|
105 |
+
outputs=download_file
|
106 |
+
)
|
107 |
+
|
108 |
+
demo.launch()
|