Rodiyah commited on
Commit
64f36cb
·
verified ·
1 Parent(s): 9724647

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -22
app.py CHANGED
@@ -8,9 +8,9 @@ from pytorch_grad_cam import GradCAM
8
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
9
  from pytorch_grad_cam.utils.image import show_cam_on_image
10
 
 
11
  import csv
12
  import datetime
13
- import os
14
 
15
  # Set device
16
  device = torch.device("cpu")
@@ -26,7 +26,7 @@ model.eval()
26
  target_layer = model.layer4[-1]
27
  cam = GradCAM(model=model, target_layers=[target_layer])
28
 
29
- # Image preprocessing
30
  transform = transforms.Compose([
31
  transforms.Resize((224, 224)),
32
  transforms.ToTensor(),
@@ -34,18 +34,15 @@ transform = transforms.Compose([
34
  [0.229, 0.224, 0.225])
35
  ])
36
 
37
- # Logging setup
38
- log_path = "prediction_logs.csv"
39
 
 
40
  def log_prediction(filename, prediction, confidence):
41
  timestamp = datetime.datetime.now().isoformat()
42
  row = [timestamp, filename, prediction, f"{confidence:.4f}"]
43
-
44
- print("⏺ Logging prediction:", row) # 🔍 Add this line
45
-
46
- with open(log_path, mode='a', newline='') as file:
47
- writer = csv.writer(file)
48
- writer.writerow(row)
49
 
50
  # Prediction function
51
  def predict_retinopathy(image):
@@ -66,21 +63,46 @@ def predict_retinopathy(image):
66
  grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
67
  cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
68
 
69
- # Logging
70
  filename = getattr(image, "filename", "uploaded_image")
71
  log_prediction(filename, label, confidence)
72
 
73
  cam_pil = Image.fromarray(cam_image)
74
  return cam_pil, f"{label} (Confidence: {confidence:.2f})"
75
 
76
- # Gradio interface
77
- gr.Interface(
78
- fn=predict_retinopathy,
79
- inputs=gr.Image(type="pil"),
80
- outputs=[
81
- gr.Image(type="pil", label="Grad-CAM"),
82
- gr.Text(label="Prediction")
83
- ],
84
- title="Diabetic Retinopathy Detection",
85
- description="Upload a retinal image to classify DR and view Grad-CAM heatmap. All predictions are logged for analysis."
86
- ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
9
  from pytorch_grad_cam.utils.image import show_cam_on_image
10
 
11
+ import io
12
  import csv
13
  import datetime
 
14
 
15
  # Set device
16
  device = torch.device("cpu")
 
26
  target_layer = model.layer4[-1]
27
  cam = GradCAM(model=model, target_layers=[target_layer])
28
 
29
+ # Preprocessing
30
  transform = transforms.Compose([
31
  transforms.Resize((224, 224)),
32
  transforms.ToTensor(),
 
34
  [0.229, 0.224, 0.225])
35
  ])
36
 
37
+ # In-memory log list
38
+ prediction_log = [["timestamp", "image_name", "prediction", "confidence"]]
39
 
40
+ # Logging function
41
  def log_prediction(filename, prediction, confidence):
42
  timestamp = datetime.datetime.now().isoformat()
43
  row = [timestamp, filename, prediction, f"{confidence:.4f}"]
44
+ prediction_log.append(row)
45
+ print("⏺ Logged:", row)
 
 
 
 
46
 
47
  # Prediction function
48
  def predict_retinopathy(image):
 
63
  grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
64
  cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
65
 
66
+ # Log it
67
  filename = getattr(image, "filename", "uploaded_image")
68
  log_prediction(filename, label, confidence)
69
 
70
  cam_pil = Image.fromarray(cam_image)
71
  return cam_pil, f"{label} (Confidence: {confidence:.2f})"
72
 
73
+ # CSV download function
74
+ def download_logs():
75
+ output = io.StringIO()
76
+ writer = csv.writer(output)
77
+ writer.writerows(prediction_log)
78
+ output.seek(0)
79
+ return gr.File.update(value=io.BytesIO(output.getvalue().encode()), filename="prediction_logs.csv")
80
+
81
+ # Build the UI with Gradio Blocks
82
+ with gr.Blocks() as demo:
83
+ gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM & Logging")
84
+
85
+ with gr.Row():
86
+ image_input = gr.Image(type="pil", label="Upload Retinal Image")
87
+ cam_output = gr.Image(type="pil", label="Grad-CAM")
88
+
89
+ prediction_output = gr.Text(label="Prediction")
90
+
91
+ with gr.Row():
92
+ run_button = gr.Button("Submit")
93
+ download_button = gr.Button("📥 Download Logs")
94
+ download_file = gr.File(label="Your Log File", interactive=False)
95
+
96
+ run_button.click(
97
+ fn=predict_retinopathy,
98
+ inputs=image_input,
99
+ outputs=[cam_output, prediction_output]
100
+ )
101
+
102
+ download_button.click(
103
+ fn=download_logs,
104
+ inputs=[],
105
+ outputs=download_file
106
+ )
107
+
108
+ demo.launch()