Update app.py
Browse files
app.py
CHANGED
@@ -8,28 +8,25 @@ from pytorch_grad_cam import GradCAM
|
|
8 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
9 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
10 |
|
11 |
-
import
|
12 |
import datetime
|
13 |
-
import
|
14 |
|
15 |
-
#
|
16 |
device = torch.device("cpu")
|
17 |
-
ADMIN_KEY = "Diabetes_Detection"
|
18 |
-
image_folder = "collected_images"
|
19 |
-
os.makedirs(image_folder, exist_ok=True)
|
20 |
|
21 |
-
#
|
22 |
model = models.resnet50(weights=None)
|
23 |
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
24 |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
|
25 |
model.to(device)
|
26 |
model.eval()
|
27 |
|
28 |
-
#
|
29 |
target_layer = model.layer4[-1]
|
30 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
31 |
|
32 |
-
#
|
33 |
transform = transforms.Compose([
|
34 |
transforms.Resize((224, 224)),
|
35 |
transforms.ToTensor(),
|
@@ -37,35 +34,21 @@ transform = transforms.Compose([
|
|
37 |
[0.229, 0.224, 0.225])
|
38 |
])
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
-
|
53 |
-
|
54 |
-
conn.close()
|
55 |
-
|
56 |
-
def log_to_db(timestamp, filename, prediction, confidence):
|
57 |
-
conn = sqlite3.connect("logs.db")
|
58 |
-
cursor = conn.cursor()
|
59 |
-
cursor.execute("INSERT INTO predictions (timestamp, filename, prediction, confidence) VALUES (?, ?, ?, ?)",
|
60 |
-
(timestamp, filename, prediction, confidence))
|
61 |
-
conn.commit()
|
62 |
-
conn.close()
|
63 |
-
|
64 |
-
init_db() # ✅ Initialize table
|
65 |
-
|
66 |
-
# === Prediction Function ===
|
67 |
def predict_retinopathy(image):
|
68 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
69 |
img = image.convert("RGB").resize((224, 224))
|
70 |
img_tensor = transform(img).unsqueeze(0).to(device)
|
71 |
|
@@ -82,32 +65,26 @@ def predict_retinopathy(image):
|
|
82 |
rgb_img_np = np.ascontiguousarray(rgb_img_np)
|
83 |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
|
84 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
85 |
-
cam_pil = Image.fromarray(cam_image)
|
86 |
-
|
87 |
-
# Save image and log
|
88 |
-
filename = f"{timestamp}_{label.replace(' ', '_')}.png"
|
89 |
-
image_path = os.path.join(image_folder, filename)
|
90 |
-
image.save(image_path)
|
91 |
|
92 |
-
|
|
|
|
|
93 |
|
|
|
94 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
fn=predict_retinopathy,
|
109 |
-
inputs=image_input,
|
110 |
-
outputs=[cam_output, prediction_output]
|
111 |
)
|
112 |
|
113 |
demo.launch()
|
|
|
8 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
9 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
10 |
|
11 |
+
import csv
|
12 |
import datetime
|
13 |
+
import os
|
14 |
|
15 |
+
# Set device
|
16 |
device = torch.device("cpu")
|
|
|
|
|
|
|
17 |
|
18 |
+
# Load model
|
19 |
model = models.resnet50(weights=None)
|
20 |
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
21 |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
|
22 |
model.to(device)
|
23 |
model.eval()
|
24 |
|
25 |
+
# Grad-CAM setup
|
26 |
target_layer = model.layer4[-1]
|
27 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
28 |
|
29 |
+
# Image preprocessing
|
30 |
transform = transforms.Compose([
|
31 |
transforms.Resize((224, 224)),
|
32 |
transforms.ToTensor(),
|
|
|
34 |
[0.229, 0.224, 0.225])
|
35 |
])
|
36 |
|
37 |
+
# Logging setup
|
38 |
+
log_path = "prediction_logs.csv"
|
39 |
+
|
40 |
+
def log_prediction(filename, prediction, confidence):
|
41 |
+
timestamp = datetime.datetime.now().isoformat()
|
42 |
+
row = [timestamp, filename, prediction, f"{confidence:.4f}"]
|
43 |
+
|
44 |
+
print("⏺ Logging prediction:", row) # 🔍 Add this line
|
45 |
+
|
46 |
+
with open(log_path, mode='a', newline='') as file:
|
47 |
+
writer = csv.writer(file)
|
48 |
+
writer.writerow(row)
|
49 |
+
|
50 |
+
# Prediction function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def predict_retinopathy(image):
|
|
|
52 |
img = image.convert("RGB").resize((224, 224))
|
53 |
img_tensor = transform(img).unsqueeze(0).to(device)
|
54 |
|
|
|
65 |
rgb_img_np = np.ascontiguousarray(rgb_img_np)
|
66 |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
|
67 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Logging
|
70 |
+
filename = getattr(image, "filename", "uploaded_image")
|
71 |
+
log_prediction(filename, label, confidence)
|
72 |
|
73 |
+
cam_pil = Image.fromarray(cam_image)
|
74 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
75 |
|
76 |
+
# Gradio interface
|
77 |
+
gr.Interface(
|
78 |
+
fn=predict_retinopathy,
|
79 |
+
inputs=gr.Image(type="pil"),
|
80 |
+
outputs=[
|
81 |
+
gr.Image(type="pil", label="Grad-CAM"),
|
82 |
+
gr.Text(label="Prediction")
|
83 |
+
],
|
84 |
+
title="Diabetic Retinopathy Detection",
|
85 |
+
description="Upload a retinal image to classify DR and view Grad-CAM heatmap. All predictions are logged for analysis."
|
86 |
+
).launch()
|
87 |
+
s=[cam_output, prediction_output]
|
|
|
|
|
|
|
88 |
)
|
89 |
|
90 |
demo.launch()
|