Rodiyah's picture
Update app.py
ab15865 verified
raw
history blame
4.04 kB
import gradio as gr
from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
from torchvision import models, transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import os
import csv
import datetime
import io
import zipfile
# Set device
device = torch.device("cpu")
# Load model
model = models.resnet50(weights=None)
model.fc = torch.nn.Linear(model.fc.in_features, 2)
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
model.to(device)
model.eval()
# Grad-CAM setup
target_layer = model.layer4[-1]
cam = GradCAM(model=model, target_layers=[target_layer])
# Image preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
# Folder to store uploaded images
image_folder = "collected_images"
os.makedirs(image_folder, exist_ok=True)
# CSV log file
csv_log_path = "prediction_logs.csv"
if not os.path.exists(csv_log_path):
with open(csv_log_path, mode="w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
# Prediction function
def predict_retinopathy(image):
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
img = image.convert("RGB").resize((224, 224))
img_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
output = model(img_tensor)
probs = F.softmax(output, dim=1)
pred = torch.argmax(probs, dim=1).item()
confidence = probs[0][pred].item()
label = "Diabetic Retinopathy (DR)" if pred == 0 else "No DR"
# Grad-CAM
rgb_img_np = np.array(img).astype(np.float32) / 255.0
rgb_img_np = np.ascontiguousarray(rgb_img_np)
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
cam_pil = Image.fromarray(cam_image)
# Save uploaded image
image_filename = f"{timestamp}_{label.replace(' ', '_')}.png"
image_path = os.path.join(image_folder, image_filename)
image.save(image_path)
# Log prediction
with open(csv_log_path, mode="a", newline="") as f:
writer = csv.writer(f)
writer.writerow([timestamp, image_filename, label, f"{confidence:.4f}"])
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
# Download logs
def download_csv():
return csv_log_path
# Zip dataset for download
def download_dataset_zip():
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w") as zipf:
# Add CSV
zipf.write(csv_log_path, arcname="prediction_logs.csv")
# Add images
for fname in os.listdir(image_folder):
fpath = os.path.join(image_folder, fname)
zipf.write(fpath, arcname=os.path.join("images", fname))
zip_buffer.seek(0)
return zip_buffer
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🧠 DR Detection with Grad-CAM + Full Dataset Logging")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Retinal Image")
cam_output = gr.Image(type="pil", label="Grad-CAM")
prediction_output = gr.Text(label="Prediction")
run_button = gr.Button("Submit")
with gr.Row():
download_csv_btn = gr.Button("📄 Download CSV Log")
download_zip_btn = gr.Button("📦 Download Full Dataset")
csv_file = gr.File()
zip_file = gr.File()
run_button.click(
fn=predict_retinopathy,
inputs=image_input,
outputs=[cam_output, prediction_output]
)
download_csv_btn.click(
fn=download_csv,
inputs=[],
outputs=csv_file
)
download_zip_btn.click(
fn=download_dataset_zip,
inputs=[],
outputs=zip_file
)
demo.launch()