Rodiyah's picture
Update app.py
3222f21 verified
raw
history blame
4.55 kB
import gradio as gr
from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
from torchvision import models, transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import os
import csv
import datetime
import zipfile
from gradio.routes import Request
# 🔐 Secret key
ADMIN_KEY = "Diabetes_Detection"
# Device
device = torch.device("cpu")
# Load model
model = models.resnet50(weights=None)
model.fc = torch.nn.Linear(model.fc.in_features, 2)
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device))
model.to(device)
model.eval()
# Grad-CAM setup
target_layer = model.layer4[-1]
cam = GradCAM(model=model, target_layers=[target_layer])
# Preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
# Folders
image_folder = "collected_images"
os.makedirs(image_folder, exist_ok=True)
csv_log_path = "prediction_logs.csv"
if not os.path.exists(csv_log_path):
with open(csv_log_path, mode="w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
# 🔍 Prediction
def predict_retinopathy(image):
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
img = image.convert("RGB").resize((224, 224))
img_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
output = model(img_tensor)
probs = F.softmax(output, dim=1)
pred = torch.argmax(probs, dim=1).item()
confidence = probs[0][pred].item()
label = "Diabetic Retinopathy (DR)" if pred == 0 else "No DR"
# Grad-CAM
rgb_img_np = np.array(img).astype(np.float32) / 255.0
rgb_img_np = np.ascontiguousarray(rgb_img_np)
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
cam_pil = Image.fromarray(cam_image)
# Save image + log
image_filename = f"{timestamp}_{label.replace(' ', '_')}.png"
image_path = os.path.join(image_folder, image_filename)
image.save(image_path)
with open(csv_log_path, mode="a", newline="") as f:
writer = csv.writer(f)
writer.writerow([timestamp, image_filename, label, f"{confidence:.4f}"])
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
# 📁 Admin downloads
def download_csv():
return csv_log_path
def download_dataset_zip():
zip_filename = "dataset_bundle.zip"
with zipfile.ZipFile(zip_filename, "w") as zipf:
zipf.write(csv_log_path, arcname="prediction_logs.csv")
for fname in os.listdir(image_folder):
fpath = os.path.join(image_folder, fname)
zipf.write(fpath, arcname=os.path.join("images", fname))
return zip_filename
# ✅ Admin check (query param)
def is_admin(request: Request):
return request and request.query_params.get("admin") == ADMIN_KEY
# 🌐 App
with gr.Blocks() as demo:
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Retinal Image")
cam_output = gr.Image(type="pil", label="Grad-CAM")
prediction_output = gr.Text(label="Prediction")
run_button = gr.Button("Submit")
run_button.click(
fn=predict_retinopathy,
inputs=image_input,
outputs=[cam_output, prediction_output]
)
# 🔒 Hidden admin section
with gr.Column(visible=False) as admin_section:
gr.Markdown("### 🔐 Private Downloads (Rodiyah Only)")
with gr.Row():
download_csv_btn = gr.Button("📄 Download CSV Log")
download_zip_btn = gr.Button("📦 Download Dataset ZIP")
csv_file = gr.File()
zip_file = gr.File()
# ✅ Reveal only if correct ?admin=Diabetes_Detection in URL
demo.load(
fn=lambda req: gr.update(visible=True) if is_admin(req) else gr.update(visible=False),
inputs=[],
outputs=admin_section,
queue=False,
api_name=False,
request=True # ✅ Required to pass HTTP request into lambda
)
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file)
demo.launch()