aaappp7878's picture
Update app.py
e8ef8e8 verified
raw
history blame
5.77 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from transformers import AutoImageProcessor, AutoModelForImageClassification
# 加载多个检测模型
models = {
"model1": {
"name": "umm-maybe/AI-image-detector",
"processor": None,
"model": None,
"weight": 0.4
},
"model2": {
"name": "sayakpaul/convnext-base-finetuned-ai-generated-detection",
"processor": None,
"model": None,
"weight": 0.3
},
"model3": {
"name": "Xenova/clip-image-classification-ai-generated",
"processor": None,
"model": None,
"weight": 0.3
}
}
# 初始化模型
for key in models:
try:
models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"])
models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"])
print(f"成功加载模型: {models[key]['name']}")
except Exception as e:
print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
models[key]["processor"] = None
models[key]["model"] = None
def analyze_image_features(image):
# 转换为OpenCV格式
img_array = np.array(image)
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
else:
img_cv = img_array
features = {}
# 基本特征
features["width"] = image.width
features["height"] = image.height
features["aspect_ratio"] = image.width / max(1, image.height)
# 颜色分析
if len(img_array.shape) == 3:
features["avg_red"] = float(np.mean(img_array[:,:,0]))
features["avg_green"] = float(np.mean(img_array[:,:,1]))
features["avg_blue"] = float(np.mean(img_array[:,:,2]))
# 边缘一致性分析
edges = cv2.Canny(img_cv, 100, 200)
features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height))
# 纹理分析 - 使用灰度共生矩阵
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
glcm = cv2.createGLCM(gray, 5) # 创建灰度共生矩阵
features["texture_contrast"] = cv2.GLCMContrast(glcm)
features["texture_homogeneity"] = cv2.GLCMHomogeneity(glcm)
# 噪声分析
if len(img_array.shape) == 3:
blurred = cv2.GaussianBlur(img_cv, (5, 5), 0)
noise = cv2.absdiff(img_cv, blurred)
features["noise_level"] = float(np.mean(noise))
return features
def detect_ai_image(image):
if image is None:
return {"error": "未提供图像"}
results = {}
valid_models = 0
weighted_ai_probability = 0
# 使用每个模型进行预测
for key, model_info in models.items():
if model_info["processor"] is not None and model_info["model"] is not None:
try:
# 处理图像
inputs = model_info["processor"](images=image, return_tensors="pt")
with torch.no_grad():
outputs = model_info["model"](**inputs)
# 获取预测结果
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# 获取概率
probabilities = torch.nn.functional.softmax(logits, dim=-1)
# 确定AI生成概率
ai_label_idx = None
for idx, label in model_info["model"].config.id2label.items():
if "ai" in label.lower() or "generated" in label.lower() or "fake" in label.lower():
ai_label_idx = idx
break
if ai_label_idx is None:
ai_label_idx = 1 # 默认索引1为AI生成
ai_probability = float(probabilities[0][ai_label_idx].item())
# 添加到结果
results[key] = {
"model_name": model_info["name"],
"ai_probability": ai_probability,
"predicted_class": model_info["model"].config.id2label[predicted_class_idx]
}
# 累加加权概率
weighted_ai_probability += ai_probability * model_info["weight"]
valid_models += 1
except Exception as e:
results[key] = {
"model_name": model_info["name"],
"error": str(e)
}
# 计算最终加权概率
final_ai_probability = weighted_ai_probability / max(sum(m["weight"] for k, m in models.items() if m["processor"] is not None), 1)
# 分析图像特征
image_features = analyze_image_features(image)
# 确定置信度级别
if final_ai_probability > 0.7:
confidence_level = "高概率AI生成"
elif final_ai_probability < 0.3:
confidence_level = "高概率人类创作"
else:
confidence_level = "无法确定"
# 构建最终结果
final_result = {
"ai_probability": final_ai_probability,
"confidence_level": confidence_level,
"individual_model_results": results,
"features": image_features
}
return final_result
# 创建Gradio界面
iface = gr.Interface(
fn=detect_ai_image,
inputs=gr.Image(type="pil"),
outputs=gr.JSON(),
title="增强型AI图像检测API",
description="多模型集成检测图像是否由AI生成",
examples=[
["example1.jpg"],
["example2.jpg"]
],
allow_flagging="never"
)
iface.launch()