Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import spaces
|
|
5 |
import os
|
6 |
import torch
|
7 |
|
8 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny
|
9 |
from huggingface_hub import login
|
10 |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
11 |
|
@@ -17,11 +17,9 @@ if hf_token:
|
|
17 |
dtype = torch.bfloat16
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
-
#
|
21 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
22 |
-
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
23 |
|
24 |
-
# Load base model with TAEF1 injected
|
25 |
pipe = DiffusionPipeline.from_pretrained(
|
26 |
"black-forest-labs/FLUX.1-dev",
|
27 |
torch_dtype=dtype,
|
@@ -29,7 +27,6 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
29 |
vae=taef1
|
30 |
).to(device)
|
31 |
|
32 |
-
# Inject method + apply LoRA
|
33 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
34 |
pipe.load_lora_weights("ZennyKenny/flux_lora_natalie-diffusion")
|
35 |
|
@@ -42,7 +39,6 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
42 |
seed = random.randint(0, MAX_SEED)
|
43 |
generator = torch.Generator().manual_seed(seed)
|
44 |
|
45 |
-
# Prepend XTON
|
46 |
prompt = f"XTON {prompt}"
|
47 |
|
48 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
@@ -115,7 +111,7 @@ Generate images in the surreal style of artist [Natalie Kav](https://www.behance
|
|
115 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
|
116 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
|
117 |
|
118 |
-
#
|
119 |
result_example = gr.Image(visible=False)
|
120 |
|
121 |
gr.Examples(
|
|
|
5 |
import os
|
6 |
import torch
|
7 |
|
8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny
|
9 |
from huggingface_hub import login
|
10 |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
11 |
|
|
|
17 |
dtype = torch.bfloat16
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
+
# ✅ DO NOT CHANGE: Working pipeline using taef1
|
21 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
|
|
22 |
|
|
|
23 |
pipe = DiffusionPipeline.from_pretrained(
|
24 |
"black-forest-labs/FLUX.1-dev",
|
25 |
torch_dtype=dtype,
|
|
|
27 |
vae=taef1
|
28 |
).to(device)
|
29 |
|
|
|
30 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
31 |
pipe.load_lora_weights("ZennyKenny/flux_lora_natalie-diffusion")
|
32 |
|
|
|
39 |
seed = random.randint(0, MAX_SEED)
|
40 |
generator = torch.Generator().manual_seed(seed)
|
41 |
|
|
|
42 |
prompt = f"XTON {prompt}"
|
43 |
|
44 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
|
|
111 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
|
112 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
|
113 |
|
114 |
+
# Use hidden result for examples only
|
115 |
result_example = gr.Image(visible=False)
|
116 |
|
117 |
gr.Examples(
|