Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import speech_recognition as sr
|
| 2 |
+
from sentiment_analysis import analyze_sentiment
|
| 3 |
+
from product_recommender import ProductRecommender
|
| 4 |
+
from objection_handler import ObjectionHandler
|
| 5 |
+
from google_sheets import fetch_call_data, store_data_in_sheet
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from env_setup import config
|
| 8 |
+
import re
|
| 9 |
+
import uuid
|
| 10 |
+
from google.oauth2 import service_account
|
| 11 |
+
from googleapiclient.discovery import build
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import plotly.express as px
|
| 14 |
+
import plotly.graph_objs as go
|
| 15 |
+
import streamlit as st
|
| 16 |
+
|
| 17 |
+
# Initialize components
|
| 18 |
+
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
| 19 |
+
objection_handler = ObjectionHandler(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
| 20 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 21 |
+
|
| 22 |
+
def generate_comprehensive_summary(chunks):
|
| 23 |
+
"""
|
| 24 |
+
Generate a comprehensive summary from conversation chunks
|
| 25 |
+
"""
|
| 26 |
+
# Extract full text from chunks
|
| 27 |
+
full_text = " ".join([chunk[0] for chunk in chunks])
|
| 28 |
+
|
| 29 |
+
# Perform basic analysis
|
| 30 |
+
total_chunks = len(chunks)
|
| 31 |
+
sentiments = [chunk[1] for chunk in chunks]
|
| 32 |
+
|
| 33 |
+
# Determine overall conversation context
|
| 34 |
+
context_keywords = {
|
| 35 |
+
'product_inquiry': ['dress', 'product', 'price', 'stock'],
|
| 36 |
+
'pricing': ['cost', 'price', 'budget'],
|
| 37 |
+
'negotiation': ['installment', 'payment', 'manage']
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# Detect conversation themes
|
| 41 |
+
themes = []
|
| 42 |
+
for keyword_type, keywords in context_keywords.items():
|
| 43 |
+
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
| 44 |
+
themes.append(keyword_type)
|
| 45 |
+
|
| 46 |
+
# Basic sentiment analysis
|
| 47 |
+
positive_count = sentiments.count('POSITIVE')
|
| 48 |
+
negative_count = sentiments.count('NEGATIVE')
|
| 49 |
+
neutral_count = sentiments.count('NEUTRAL')
|
| 50 |
+
|
| 51 |
+
# Key interaction highlights
|
| 52 |
+
key_interactions = []
|
| 53 |
+
for chunk in chunks:
|
| 54 |
+
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
|
| 55 |
+
key_interactions.append(chunk[0])
|
| 56 |
+
|
| 57 |
+
# Construct summary
|
| 58 |
+
summary = f"Conversation Summary:\n"
|
| 59 |
+
|
| 60 |
+
# Context and themes
|
| 61 |
+
if 'product_inquiry' in themes:
|
| 62 |
+
summary += "• Customer initiated a product inquiry about items.\n"
|
| 63 |
+
|
| 64 |
+
if 'pricing' in themes:
|
| 65 |
+
summary += "• Price and budget considerations were discussed.\n"
|
| 66 |
+
|
| 67 |
+
if 'negotiation' in themes:
|
| 68 |
+
summary += "• Customer and seller explored flexible payment options.\n"
|
| 69 |
+
|
| 70 |
+
# Sentiment insights
|
| 71 |
+
summary += f"\nConversation Sentiment:\n"
|
| 72 |
+
summary += f"• Positive Interactions: {positive_count}\n"
|
| 73 |
+
summary += f"• Negative Interactions: {negative_count}\n"
|
| 74 |
+
summary += f"• Neutral Interactions: {neutral_count}\n"
|
| 75 |
+
|
| 76 |
+
# Key highlights
|
| 77 |
+
summary += "\nKey Conversation Points:\n"
|
| 78 |
+
for interaction in key_interactions[:3]: # Limit to top 3 key points
|
| 79 |
+
summary += f"• {interaction}\n"
|
| 80 |
+
|
| 81 |
+
# Conversation outcome
|
| 82 |
+
if positive_count > negative_count:
|
| 83 |
+
summary += "\nOutcome: Constructive and potentially successful interaction."
|
| 84 |
+
elif negative_count > positive_count:
|
| 85 |
+
summary += "\nOutcome: Interaction may require further follow-up."
|
| 86 |
+
else:
|
| 87 |
+
summary += "\nOutcome: Neutral interaction with potential for future engagement."
|
| 88 |
+
|
| 89 |
+
return summary
|
| 90 |
+
|
| 91 |
+
def is_valid_input(text):
|
| 92 |
+
text = text.strip().lower()
|
| 93 |
+
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
|
| 94 |
+
return False
|
| 95 |
+
return True
|
| 96 |
+
|
| 97 |
+
def is_relevant_sentiment(sentiment_score):
|
| 98 |
+
return sentiment_score > 0.4
|
| 99 |
+
|
| 100 |
+
def calculate_overall_sentiment(sentiment_scores):
|
| 101 |
+
if sentiment_scores:
|
| 102 |
+
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
|
| 103 |
+
overall_sentiment = (
|
| 104 |
+
"POSITIVE" if average_sentiment > 0 else
|
| 105 |
+
"NEGATIVE" if average_sentiment < 0 else
|
| 106 |
+
"NEUTRAL"
|
| 107 |
+
)
|
| 108 |
+
else:
|
| 109 |
+
overall_sentiment = "NEUTRAL"
|
| 110 |
+
return overall_sentiment
|
| 111 |
+
|
| 112 |
+
def real_time_analysis():
|
| 113 |
+
recognizer = sr.Recognizer()
|
| 114 |
+
mic = sr.Microphone()
|
| 115 |
+
|
| 116 |
+
st.info("Say 'stop' to end the process.")
|
| 117 |
+
|
| 118 |
+
sentiment_scores = []
|
| 119 |
+
transcribed_chunks = []
|
| 120 |
+
total_text = ""
|
| 121 |
+
|
| 122 |
+
try:
|
| 123 |
+
while True:
|
| 124 |
+
with mic as source:
|
| 125 |
+
st.write("Listening...")
|
| 126 |
+
recognizer.adjust_for_ambient_noise(source)
|
| 127 |
+
audio = recognizer.listen(source)
|
| 128 |
+
|
| 129 |
+
try:
|
| 130 |
+
st.write("Recognizing...")
|
| 131 |
+
text = recognizer.recognize_google(audio)
|
| 132 |
+
st.write(f"*Recognized Text:* {text}")
|
| 133 |
+
|
| 134 |
+
if 'stop' in text.lower():
|
| 135 |
+
st.write("Stopping real-time analysis...")
|
| 136 |
+
break
|
| 137 |
+
|
| 138 |
+
# Append to the total conversation
|
| 139 |
+
total_text += text + " "
|
| 140 |
+
sentiment, score = analyze_sentiment(text)
|
| 141 |
+
sentiment_scores.append(score)
|
| 142 |
+
|
| 143 |
+
# Handle objection
|
| 144 |
+
objection_response = handle_objection(text)
|
| 145 |
+
|
| 146 |
+
# Get product recommendation
|
| 147 |
+
recommendations = []
|
| 148 |
+
if is_valid_input(text) and is_relevant_sentiment(score):
|
| 149 |
+
query_embedding = model.encode([text])
|
| 150 |
+
distances, indices = product_recommender.index.search(query_embedding, 1)
|
| 151 |
+
|
| 152 |
+
if distances[0][0] < 1.5: # Similarity threshold
|
| 153 |
+
recommendations = product_recommender.get_recommendations(text)
|
| 154 |
+
|
| 155 |
+
transcribed_chunks.append((text, sentiment, score))
|
| 156 |
+
|
| 157 |
+
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
| 158 |
+
st.write(f"*Objection Response:* {objection_response}")
|
| 159 |
+
|
| 160 |
+
if recommendations:
|
| 161 |
+
st.write("*Product Recommendations:*")
|
| 162 |
+
for rec in recommendations:
|
| 163 |
+
st.write(rec)
|
| 164 |
+
|
| 165 |
+
except sr.UnknownValueError:
|
| 166 |
+
st.error("Speech Recognition could not understand the audio.")
|
| 167 |
+
except sr.RequestError as e:
|
| 168 |
+
st.error(f"Error with the Speech Recognition service: {e}")
|
| 169 |
+
except Exception as e:
|
| 170 |
+
st.error(f"Error during processing: {e}")
|
| 171 |
+
|
| 172 |
+
# After conversation ends, calculate and display overall sentiment and summary
|
| 173 |
+
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
|
| 174 |
+
call_summary = generate_comprehensive_summary(transcribed_chunks)
|
| 175 |
+
|
| 176 |
+
st.subheader("Conversation Summary:")
|
| 177 |
+
st.write(total_text.strip())
|
| 178 |
+
st.subheader("Overall Sentiment:")
|
| 179 |
+
st.write(overall_sentiment)
|
| 180 |
+
|
| 181 |
+
# Store data in Google Sheets
|
| 182 |
+
store_data_in_sheet(
|
| 183 |
+
config["google_sheet_id"],
|
| 184 |
+
transcribed_chunks,
|
| 185 |
+
call_summary,
|
| 186 |
+
overall_sentiment
|
| 187 |
+
)
|
| 188 |
+
st.success("Conversation data stored successfully in Google Sheets!")
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
st.error(f"Error in real-time analysis: {e}")
|
| 192 |
+
|
| 193 |
+
def handle_objection(text):
|
| 194 |
+
query_embedding = model.encode([text])
|
| 195 |
+
distances, indices = objection_handler.index.search(query_embedding, 1)
|
| 196 |
+
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
|
| 197 |
+
responses = objection_handler.handle_objection(text)
|
| 198 |
+
return "\n".join(responses) if responses else "No objection response found."
|
| 199 |
+
return "No objection response found."
|
| 200 |
+
|
| 201 |
+
# (Previous imports remain the same)
|
| 202 |
+
|
| 203 |
+
def run_app():
|
| 204 |
+
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
| 205 |
+
st.title("AI Sales Call Assistant")
|
| 206 |
+
|
| 207 |
+
st.sidebar.title("Navigation")
|
| 208 |
+
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
|
| 209 |
+
|
| 210 |
+
if app_mode == "Real-Time Call Analysis":
|
| 211 |
+
st.header("Real-Time Sales Call Analysis")
|
| 212 |
+
if st.button("Start Listening"):
|
| 213 |
+
real_time_analysis()
|
| 214 |
+
|
| 215 |
+
elif app_mode == "Dashboard":
|
| 216 |
+
st.header("Call Summaries and Sentiment Analysis")
|
| 217 |
+
try:
|
| 218 |
+
data = fetch_call_data(config["google_sheet_id"])
|
| 219 |
+
if data.empty:
|
| 220 |
+
st.warning("No data available in the Google Sheet.")
|
| 221 |
+
else:
|
| 222 |
+
# Sentiment Visualizations
|
| 223 |
+
sentiment_counts = data['Sentiment'].value_counts()
|
| 224 |
+
|
| 225 |
+
# Pie Chart
|
| 226 |
+
col1, col2 = st.columns(2)
|
| 227 |
+
with col1:
|
| 228 |
+
st.subheader("Sentiment Distribution")
|
| 229 |
+
fig_pie = px.pie(
|
| 230 |
+
values=sentiment_counts.values,
|
| 231 |
+
names=sentiment_counts.index,
|
| 232 |
+
title='Call Sentiment Breakdown',
|
| 233 |
+
color_discrete_map={
|
| 234 |
+
'POSITIVE': 'green',
|
| 235 |
+
'NEGATIVE': 'red',
|
| 236 |
+
'NEUTRAL': 'blue'
|
| 237 |
+
}
|
| 238 |
+
)
|
| 239 |
+
st.plotly_chart(fig_pie)
|
| 240 |
+
|
| 241 |
+
# Bar Chart
|
| 242 |
+
with col2:
|
| 243 |
+
st.subheader("Sentiment Counts")
|
| 244 |
+
fig_bar = px.bar(
|
| 245 |
+
x=sentiment_counts.index,
|
| 246 |
+
y=sentiment_counts.values,
|
| 247 |
+
title='Number of Calls by Sentiment',
|
| 248 |
+
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
|
| 249 |
+
color=sentiment_counts.index,
|
| 250 |
+
color_discrete_map={
|
| 251 |
+
'POSITIVE': 'green',
|
| 252 |
+
'NEGATIVE': 'red',
|
| 253 |
+
'NEUTRAL': 'blue'
|
| 254 |
+
}
|
| 255 |
+
)
|
| 256 |
+
st.plotly_chart(fig_bar)
|
| 257 |
+
|
| 258 |
+
# Existing Call Details Section
|
| 259 |
+
st.subheader("All Calls")
|
| 260 |
+
display_data = data.copy()
|
| 261 |
+
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
| 262 |
+
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
| 263 |
+
|
| 264 |
+
# Dropdown to select Call ID
|
| 265 |
+
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
| 266 |
+
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
| 267 |
+
|
| 268 |
+
# Display selected Call ID details
|
| 269 |
+
call_details = data[data['Call ID'] == call_id]
|
| 270 |
+
if not call_details.empty:
|
| 271 |
+
st.subheader("Detailed Call Information")
|
| 272 |
+
st.write(f"**Call ID:** {call_id}")
|
| 273 |
+
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
| 274 |
+
|
| 275 |
+
# Expand summary section
|
| 276 |
+
st.subheader("Full Call Summary")
|
| 277 |
+
st.text_area("Summary:",
|
| 278 |
+
value=call_details.iloc[0]['Summary'],
|
| 279 |
+
height=200,
|
| 280 |
+
disabled=True)
|
| 281 |
+
|
| 282 |
+
# Show all chunks for the selected call
|
| 283 |
+
st.subheader("Conversation Chunks")
|
| 284 |
+
for _, row in call_details.iterrows():
|
| 285 |
+
if pd.notna(row['Chunk']):
|
| 286 |
+
st.write(f"**Chunk:** {row['Chunk']}")
|
| 287 |
+
st.write(f"**Sentiment:** {row['Sentiment']}")
|
| 288 |
+
st.write("---") # Separator between chunks
|
| 289 |
+
else:
|
| 290 |
+
st.error("No details available for the selected Call ID.")
|
| 291 |
+
except Exception as e:
|
| 292 |
+
st.error(f"Error loading dashboard: {e}")
|
| 293 |
+
|
| 294 |
+
if __name__ == "__main__":
|
| 295 |
+
run_app()
|