Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -48,7 +48,7 @@ class GeminiLLM(Runnable):
|
|
48 |
|
49 |
class GeminiEmbeddings(Embeddings):
|
50 |
def __init__(self, model_name="models/embedding-001", api_key=None):
|
51 |
-
api_key = "
|
52 |
if not api_key:
|
53 |
raise ValueError("GOOGLE_API_KEY not found in environment variables.")
|
54 |
os.environ["GOOGLE_API_KEY"] = api_key
|
@@ -72,7 +72,6 @@ class GeminiEmbeddings(Embeddings):
|
|
72 |
task_type="retrieval_query"
|
73 |
)["embedding"]
|
74 |
|
75 |
-
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
76 |
|
77 |
vectorstore_global = None
|
78 |
|
@@ -82,6 +81,9 @@ if "feedback_log" not in st.session_state:
|
|
82 |
|
83 |
def load_environment():
|
84 |
load_dotenv()
|
|
|
|
|
|
|
85 |
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
86 |
|
87 |
def preload_modtran_document():
|
@@ -195,10 +197,17 @@ def faiss_search_with_keywords(query):
|
|
195 |
context= '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content}" for doc in docs])
|
196 |
return self_reasoning(query, context)
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
def faiss_search_with_reasoning(query):
|
199 |
global vectorstore_global
|
200 |
if vectorstore_global is None:
|
201 |
raise ValueError("FAISS vectorstore is not initialized.")
|
|
|
202 |
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
|
203 |
docs = retriever.get_relevant_documents(query)
|
204 |
pairs = [(query, doc.page_content) for doc in docs]
|
|
|
48 |
|
49 |
class GeminiEmbeddings(Embeddings):
|
50 |
def __init__(self, model_name="models/embedding-001", api_key=None):
|
51 |
+
self.api_key = api_key or os.environ["GOOGLE_API_KEY"]
|
52 |
if not api_key:
|
53 |
raise ValueError("GOOGLE_API_KEY not found in environment variables.")
|
54 |
os.environ["GOOGLE_API_KEY"] = api_key
|
|
|
72 |
task_type="retrieval_query"
|
73 |
)["embedding"]
|
74 |
|
|
|
75 |
|
76 |
vectorstore_global = None
|
77 |
|
|
|
81 |
|
82 |
def load_environment():
|
83 |
load_dotenv()
|
84 |
+
# Ensure HF_TOKEN is available
|
85 |
+
if "HF_TOKEN" not in os.environ and "HUGGINGFACEHUB_API_TOKEN" in os.environ:
|
86 |
+
os.environ["HF_TOKEN"] = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
87 |
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
88 |
|
89 |
def preload_modtran_document():
|
|
|
197 |
context= '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content}" for doc in docs])
|
198 |
return self_reasoning(query, context)
|
199 |
|
200 |
+
def get_reranker():
|
201 |
+
global reranker
|
202 |
+
if reranker is None:
|
203 |
+
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
204 |
+
return reranker
|
205 |
+
|
206 |
def faiss_search_with_reasoning(query):
|
207 |
global vectorstore_global
|
208 |
if vectorstore_global is None:
|
209 |
raise ValueError("FAISS vectorstore is not initialized.")
|
210 |
+
reranker = get_reranker()
|
211 |
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
|
212 |
docs = retriever.get_relevant_documents(query)
|
213 |
pairs = [(query, doc.page_content) for doc in docs]
|