ZarinT commited on
Commit
14d5927
·
verified ·
1 Parent(s): c9b0950

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -80,8 +80,8 @@ if "feedback_log" not in st.session_state:
80
  def load_environment():
81
  load_dotenv()
82
  # Ensure HF_TOKEN is available
83
- if "HF_TOKEN" not in os.environ and "HUGGINGFACEHUB_API_TOKEN" in os.environ:
84
- os.environ["HF_TOKEN"] = os.environ["HUGGINGFACEHUB_API_TOKEN"]
85
  genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
86
 
87
  from keybert import KeyBERT
@@ -158,7 +158,13 @@ def set_global_vectorstore(vectorstore):
158
  global vectorstore_global
159
  vectorstore_global = vectorstore
160
 
161
- kw_model = KeyBERT()
 
 
 
 
 
 
162
 
163
  def self_reasoning(query, context):
164
  llm = GeminiLLM()
@@ -191,6 +197,7 @@ def faiss_search_with_keywords(query):
191
  global vectorstore_global
192
  if vectorstore_global is None:
193
  raise ValueError("FAISS vectorstore is not initialized.")
 
194
  keywords = kw_model.extract_keywords(query, keyphrase_ngram_range=(1,2), stop_words='english', top_n=5)
195
  refined_query = " ".join([keyword[0] for keyword in keywords])
196
  retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
 
80
  def load_environment():
81
  load_dotenv()
82
  # Ensure HF_TOKEN is available
83
+ if "HUGGINGFACEHUB_API_TOKEN" not in os.environ and "HF_TOKEN" in os.environ:
84
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.environ["HF_TOKEN"]
85
  genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
86
 
87
  from keybert import KeyBERT
 
158
  global vectorstore_global
159
  vectorstore_global = vectorstore
160
 
161
+ kw_model = None
162
+
163
+ def get_kw_model():
164
+ global kw_model
165
+ if kw_model is None:
166
+ kw_model = KeyBERT()
167
+ return kw_model
168
 
169
  def self_reasoning(query, context):
170
  llm = GeminiLLM()
 
197
  global vectorstore_global
198
  if vectorstore_global is None:
199
  raise ValueError("FAISS vectorstore is not initialized.")
200
+ kw_model = get_kw_model()
201
  keywords = kw_model.extract_keywords(query, keyphrase_ngram_range=(1,2), stop_words='english', top_n=5)
202
  refined_query = " ".join([keyword[0] for keyword in keywords])
203
  retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})