Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -80,8 +80,8 @@ if "feedback_log" not in st.session_state:
|
|
80 |
def load_environment():
|
81 |
load_dotenv()
|
82 |
# Ensure HF_TOKEN is available
|
83 |
-
if "
|
84 |
-
os.environ["
|
85 |
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
86 |
|
87 |
from keybert import KeyBERT
|
@@ -158,7 +158,13 @@ def set_global_vectorstore(vectorstore):
|
|
158 |
global vectorstore_global
|
159 |
vectorstore_global = vectorstore
|
160 |
|
161 |
-
kw_model =
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
def self_reasoning(query, context):
|
164 |
llm = GeminiLLM()
|
@@ -191,6 +197,7 @@ def faiss_search_with_keywords(query):
|
|
191 |
global vectorstore_global
|
192 |
if vectorstore_global is None:
|
193 |
raise ValueError("FAISS vectorstore is not initialized.")
|
|
|
194 |
keywords = kw_model.extract_keywords(query, keyphrase_ngram_range=(1,2), stop_words='english', top_n=5)
|
195 |
refined_query = " ".join([keyword[0] for keyword in keywords])
|
196 |
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
|
|
|
80 |
def load_environment():
|
81 |
load_dotenv()
|
82 |
# Ensure HF_TOKEN is available
|
83 |
+
if "HUGGINGFACEHUB_API_TOKEN" not in os.environ and "HF_TOKEN" in os.environ:
|
84 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.environ["HF_TOKEN"]
|
85 |
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
86 |
|
87 |
from keybert import KeyBERT
|
|
|
158 |
global vectorstore_global
|
159 |
vectorstore_global = vectorstore
|
160 |
|
161 |
+
kw_model = None
|
162 |
+
|
163 |
+
def get_kw_model():
|
164 |
+
global kw_model
|
165 |
+
if kw_model is None:
|
166 |
+
kw_model = KeyBERT()
|
167 |
+
return kw_model
|
168 |
|
169 |
def self_reasoning(query, context):
|
170 |
llm = GeminiLLM()
|
|
|
197 |
global vectorstore_global
|
198 |
if vectorstore_global is None:
|
199 |
raise ValueError("FAISS vectorstore is not initialized.")
|
200 |
+
kw_model = get_kw_model()
|
201 |
keywords = kw_model.extract_keywords(query, keyphrase_ngram_range=(1,2), stop_words='english', top_n=5)
|
202 |
refined_query = " ".join([keyword[0] for keyword in keywords])
|
203 |
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
|