|
from typing import Optional, Tuple, Union |
|
import math |
|
import torch |
|
from torch import nn |
|
|
|
class ConvolutionModule(nn.Module): |
|
"""ConvolutionModule in Conformer model.""" |
|
|
|
def __init__(self, |
|
channels: int, |
|
kernel_size: int = 15, |
|
activation: nn.Module = nn.ReLU(), |
|
norm: str = "batch_norm", |
|
causal: bool = False, |
|
bias: bool = True): |
|
"""Construct an ConvolutionModule object. |
|
Args: |
|
channels (int): The number of channels of conv layers. |
|
kernel_size (int): Kernel size of conv layers. |
|
causal (int): Whether use causal convolution or not |
|
""" |
|
super().__init__() |
|
|
|
self.pointwise_conv1 = nn.Conv1d( |
|
channels, |
|
2 * channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=bias, |
|
) |
|
|
|
|
|
|
|
|
|
if causal: |
|
padding = 0 |
|
self.lorder = kernel_size - 1 |
|
else: |
|
|
|
assert (kernel_size - 1) % 2 == 0 |
|
padding = (kernel_size - 1) // 2 |
|
self.lorder = 0 |
|
self.depthwise_conv = nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
stride=1, |
|
padding=padding, |
|
groups=channels, |
|
bias=bias, |
|
) |
|
|
|
assert norm in ['batch_norm', 'layer_norm'] |
|
if norm == "batch_norm": |
|
self.use_layer_norm = False |
|
self.norm = nn.BatchNorm1d(channels) |
|
else: |
|
self.use_layer_norm = True |
|
self.norm = nn.LayerNorm(channels) |
|
|
|
self.pointwise_conv2 = nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=bias, |
|
) |
|
self.activation = activation |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
cache: torch.Tensor = torch.zeros((0, 0, 0)), |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Compute convolution module. |
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, channels). |
|
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), |
|
(0, 0, 0) means fake mask. |
|
cache (torch.Tensor): left context cache, it is only |
|
used in causal convolution (#batch, channels, cache_t), |
|
(0, 0, 0) meas fake cache. |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, channels). |
|
""" |
|
|
|
x = x.transpose(1, 2) |
|
|
|
|
|
if mask_pad.size(2) > 0: |
|
x.masked_fill_(~mask_pad, 0.0) |
|
|
|
if self.lorder > 0: |
|
if cache.size(2) == 0: |
|
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0) |
|
else: |
|
assert cache.size(0) == x.size(0) |
|
assert cache.size(1) == x.size(1) |
|
x = torch.cat((cache, x), dim=2) |
|
assert (x.size(2) > self.lorder) |
|
new_cache = x[:, :, -self.lorder:] |
|
else: |
|
|
|
|
|
|
|
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) |
|
|
|
|
|
x = self.pointwise_conv1(x) |
|
x = nn.functional.glu(x, dim=1) |
|
|
|
|
|
x = self.depthwise_conv(x) |
|
if self.use_layer_norm: |
|
x = x.transpose(1, 2) |
|
x = self.activation(self.norm(x)) |
|
if self.use_layer_norm: |
|
x = x.transpose(1, 2) |
|
x = self.pointwise_conv2(x) |
|
|
|
if mask_pad.size(2) > 0: |
|
x.masked_fill_(~mask_pad, 0.0) |
|
|
|
return x.transpose(1, 2), new_cache |
|
|
|
class PositionwiseFeedForward(torch.nn.Module): |
|
"""Positionwise feed forward layer. |
|
|
|
FeedForward are appied on each position of the sequence. |
|
The output dim is same with the input dim. |
|
|
|
Args: |
|
idim (int): Input dimenstion. |
|
hidden_units (int): The number of hidden units. |
|
dropout_rate (float): Dropout rate. |
|
activation (torch.nn.Module): Activation function |
|
""" |
|
|
|
def __init__( |
|
self, |
|
idim: int, |
|
hidden_units: int, |
|
dropout_rate: float, |
|
activation: torch.nn.Module = torch.nn.ReLU(), |
|
): |
|
"""Construct a PositionwiseFeedForward object.""" |
|
super(PositionwiseFeedForward, self).__init__() |
|
self.w_1 = torch.nn.Linear(idim, hidden_units) |
|
self.activation = activation |
|
self.dropout = torch.nn.Dropout(dropout_rate) |
|
self.w_2 = torch.nn.Linear(hidden_units, idim) |
|
|
|
def forward(self, xs: torch.Tensor) -> torch.Tensor: |
|
"""Forward function. |
|
|
|
Args: |
|
xs: input tensor (B, L, D) |
|
Returns: |
|
output tensor, (B, L, D) |
|
""" |
|
return self.w_2(self.dropout(self.activation(self.w_1(xs)))) |
|
|
|
class Swish(torch.nn.Module): |
|
"""Construct an Swish object.""" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Return Swish activation function.""" |
|
return x * torch.sigmoid(x) |
|
|
|
class MultiHeadedAttention(nn.Module): |
|
"""Multi-Head Attention layer. |
|
|
|
Args: |
|
n_head (int): The number of heads. |
|
n_feat (int): The number of features. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, |
|
n_head: int, |
|
n_feat: int, |
|
dropout_rate: float, |
|
key_bias: bool = True): |
|
"""Construct an MultiHeadedAttention object.""" |
|
super().__init__() |
|
assert n_feat % n_head == 0 |
|
|
|
self.d_k = n_feat // n_head |
|
self.h = n_head |
|
self.linear_q = nn.Linear(n_feat, n_feat) |
|
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) |
|
self.linear_v = nn.Linear(n_feat, n_feat) |
|
self.linear_out = nn.Linear(n_feat, n_feat) |
|
self.dropout = nn.Dropout(p=dropout_rate) |
|
|
|
def forward_qkv( |
|
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Transform query, key and value. |
|
|
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
|
|
Returns: |
|
torch.Tensor: Transformed query tensor, size |
|
(#batch, n_head, time1, d_k). |
|
torch.Tensor: Transformed key tensor, size |
|
(#batch, n_head, time2, d_k). |
|
torch.Tensor: Transformed value tensor, size |
|
(#batch, n_head, time2, d_k). |
|
|
|
""" |
|
n_batch = query.size(0) |
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) |
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) |
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) |
|
q = q.transpose(1, 2) |
|
k = k.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
return q, k, v |
|
|
|
def forward_attention( |
|
self, |
|
value: torch.Tensor, |
|
scores: torch.Tensor, |
|
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) |
|
) -> torch.Tensor: |
|
"""Compute attention context vector. |
|
|
|
Args: |
|
value (torch.Tensor): Transformed value, size |
|
(#batch, n_head, time2, d_k). |
|
scores (torch.Tensor): Attention score, size |
|
(#batch, n_head, time1, time2). |
|
mask (torch.Tensor): Mask, size (#batch, 1, time2) or |
|
(#batch, time1, time2), (0, 0, 0) means fake mask. |
|
|
|
Returns: |
|
torch.Tensor: Transformed value (#batch, time1, d_model) |
|
weighted by the attention score (#batch, time1, time2). |
|
|
|
""" |
|
n_batch = value.size(0) |
|
|
|
if mask.size(2) > 0: |
|
mask = mask.unsqueeze(1).eq(0) |
|
|
|
mask = mask[:, :, :, :scores.size(-1)] |
|
scores = scores.masked_fill(mask, -float('inf')) |
|
attn = torch.softmax(scores, dim=-1).masked_fill( |
|
mask, 0.0) |
|
|
|
else: |
|
attn = torch.softmax(scores, dim=-1) |
|
|
|
p_attn = self.dropout(attn) |
|
x = torch.matmul(p_attn, value) |
|
x = (x.transpose(1, 2).contiguous().view(n_batch, -1, |
|
self.h * self.d_k) |
|
) |
|
|
|
return self.linear_out(x) |
|
|
|
def forward( |
|
self, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
pos_emb: torch.Tensor = torch.empty(0), |
|
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Compute scaled dot product attention. |
|
|
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
(#batch, time1, time2). |
|
1.When applying cross attention between decoder and encoder, |
|
the batch padding mask for input is in (#batch, 1, T) shape. |
|
2.When applying self attention of encoder, |
|
the mask is in (#batch, T, T) shape. |
|
3.When applying self attention of decoder, |
|
the mask is in (#batch, L, L) shape. |
|
4.If the different position in decoder see different block |
|
of the encoder, such as Mocha, the passed in mask could be |
|
in (#batch, L, T) shape. But there is no such case in current |
|
CosyVoice. |
|
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), |
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
and `head * d_k == size` |
|
|
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) |
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
and `head * d_k == size` |
|
|
|
""" |
|
q, k, v = self.forward_qkv(query, key, value) |
|
if cache.size(0) > 0: |
|
key_cache, value_cache = torch.split(cache, |
|
cache.size(-1) // 2, |
|
dim=-1) |
|
k = torch.cat([key_cache, k], dim=2) |
|
v = torch.cat([value_cache, v], dim=2) |
|
new_cache = torch.cat((k, v), dim=-1) |
|
|
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) |
|
return self.forward_attention(v, scores, mask), new_cache |
|
|
|
|
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention): |
|
"""Multi-Head Attention layer with relative position encoding. |
|
Paper: https://arxiv.org/abs/1901.02860 |
|
Args: |
|
n_head (int): The number of heads. |
|
n_feat (int): The number of features. |
|
dropout_rate (float): Dropout rate. |
|
""" |
|
|
|
def __init__(self, |
|
n_head: int, |
|
n_feat: int, |
|
dropout_rate: float, |
|
key_bias: bool = True): |
|
"""Construct an RelPositionMultiHeadedAttention object.""" |
|
super().__init__(n_head, n_feat, dropout_rate, key_bias) |
|
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) |
|
|
|
|
|
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) |
|
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) |
|
torch.nn.init.xavier_uniform_(self.pos_bias_u) |
|
torch.nn.init.xavier_uniform_(self.pos_bias_v) |
|
|
|
def rel_shift(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Compute relative positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). |
|
time1 means the length of query vector. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor. |
|
|
|
""" |
|
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), |
|
device=x.device, |
|
dtype=x.dtype) |
|
x_padded = torch.cat([zero_pad, x], dim=-1) |
|
|
|
x_padded = x_padded.view(x.size()[0], |
|
x.size()[1], |
|
x.size(3) + 1, x.size(2)) |
|
x = x_padded[:, :, 1:].view_as(x)[ |
|
:, :, :, : x.size(-1) // 2 + 1 |
|
] |
|
return x |
|
|
|
def forward( |
|
self, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
pos_emb: torch.Tensor = torch.empty(0), |
|
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding. |
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
(#batch, time1, time2), (0, 0, 0) means fake mask. |
|
pos_emb (torch.Tensor): Positional embedding tensor |
|
(#batch, time2, size). |
|
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), |
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
and `head * d_k == size` |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) |
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
and `head * d_k == size` |
|
""" |
|
q, k, v = self.forward_qkv(query, key, value) |
|
q = q.transpose(1, 2) |
|
|
|
if cache.size(0) > 0: |
|
key_cache, value_cache = torch.split(cache, |
|
cache.size(-1) // 2, |
|
dim=-1) |
|
k = torch.cat([key_cache, k], dim=2) |
|
v = torch.cat([value_cache, v], dim=2) |
|
|
|
|
|
new_cache = torch.cat((k, v), dim=-1) |
|
|
|
n_batch_pos = pos_emb.size(0) |
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) |
|
p = p.transpose(1, 2) |
|
|
|
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) |
|
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) |
|
|
|
|
|
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) |
|
|
|
if matrix_ac.shape != matrix_bd.shape: |
|
matrix_bd = self.rel_shift(matrix_bd) |
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt( |
|
self.d_k) |
|
|
|
return self.forward_attention(v, scores, mask), new_cache |
|
|
|
|
|
|
|
def subsequent_mask( |
|
size: int, |
|
device: torch.device = torch.device("cpu"), |
|
) -> torch.Tensor: |
|
"""Create mask for subsequent steps (size, size). |
|
|
|
This mask is used only in decoder which works in an auto-regressive mode. |
|
This means the current step could only do attention with its left steps. |
|
|
|
In encoder, fully attention is used when streaming is not necessary and |
|
the sequence is not long. In this case, no attention mask is needed. |
|
|
|
When streaming is need, chunk-based attention is used in encoder. See |
|
subsequent_chunk_mask for the chunk-based attention mask. |
|
|
|
Args: |
|
size (int): size of mask |
|
str device (str): "cpu" or "cuda" or torch.Tensor.device |
|
dtype (torch.device): result dtype |
|
|
|
Returns: |
|
torch.Tensor: mask |
|
|
|
Examples: |
|
>>> subsequent_mask(3) |
|
[[1, 0, 0], |
|
[1, 1, 0], |
|
[1, 1, 1]] |
|
""" |
|
arange = torch.arange(size, device=device) |
|
mask = arange.expand(size, size) |
|
arange = arange.unsqueeze(-1) |
|
mask = mask <= arange |
|
return mask |
|
|
|
|
|
def subsequent_chunk_mask( |
|
size: int, |
|
chunk_size: int, |
|
num_left_chunks: int = -1, |
|
device: torch.device = torch.device("cpu"), |
|
) -> torch.Tensor: |
|
"""Create mask for subsequent steps (size, size) with chunk size, |
|
this is for streaming encoder |
|
|
|
Args: |
|
size (int): size of mask |
|
chunk_size (int): size of chunk |
|
num_left_chunks (int): number of left chunks |
|
<0: use full chunk |
|
>=0: use num_left_chunks |
|
device (torch.device): "cpu" or "cuda" or torch.Tensor.device |
|
|
|
Returns: |
|
torch.Tensor: mask |
|
|
|
Examples: |
|
>>> subsequent_chunk_mask(4, 2) |
|
[[1, 1, 0, 0], |
|
[1, 1, 0, 0], |
|
[1, 1, 1, 1], |
|
[1, 1, 1, 1]] |
|
""" |
|
ret = torch.zeros(size, size, device=device, dtype=torch.bool) |
|
for i in range(size): |
|
if num_left_chunks < 0: |
|
start = 0 |
|
else: |
|
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0) |
|
ending = min((i // chunk_size + 1) * chunk_size, size) |
|
ret[i, start:ending] = True |
|
return ret |
|
|
|
def add_optional_chunk_mask(xs: torch.Tensor, |
|
masks: torch.Tensor, |
|
use_dynamic_chunk: bool, |
|
use_dynamic_left_chunk: bool, |
|
decoding_chunk_size: int, |
|
static_chunk_size: int, |
|
num_decoding_left_chunks: int, |
|
enable_full_context: bool = True): |
|
""" Apply optional mask for encoder. |
|
|
|
Args: |
|
xs (torch.Tensor): padded input, (B, L, D), L for max length |
|
mask (torch.Tensor): mask for xs, (B, 1, L) |
|
use_dynamic_chunk (bool): whether to use dynamic chunk or not |
|
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for |
|
training. |
|
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's |
|
0: default for training, use random dynamic chunk. |
|
<0: for decoding, use full chunk. |
|
>0: for decoding, use fixed chunk size as set. |
|
static_chunk_size (int): chunk size for static chunk training/decoding |
|
if it's greater than 0, if use_dynamic_chunk is true, |
|
this parameter will be ignored |
|
num_decoding_left_chunks: number of left chunks, this is for decoding, |
|
the chunk size is decoding_chunk_size. |
|
>=0: use num_decoding_left_chunks |
|
<0: use all left chunks |
|
enable_full_context (bool): |
|
True: chunk size is either [1, 25] or full context(max_len) |
|
False: chunk size ~ U[1, 25] |
|
|
|
Returns: |
|
torch.Tensor: chunk mask of the input xs. |
|
""" |
|
|
|
if use_dynamic_chunk: |
|
max_len = xs.size(1) |
|
if decoding_chunk_size < 0: |
|
chunk_size = max_len |
|
num_left_chunks = -1 |
|
elif decoding_chunk_size > 0: |
|
chunk_size = decoding_chunk_size |
|
num_left_chunks = num_decoding_left_chunks |
|
else: |
|
|
|
|
|
|
|
chunk_size = torch.randint(1, max_len, (1, )).item() |
|
num_left_chunks = -1 |
|
if chunk_size > max_len // 2 and enable_full_context: |
|
chunk_size = max_len |
|
else: |
|
chunk_size = chunk_size % 25 + 1 |
|
if use_dynamic_left_chunk: |
|
max_left_chunks = (max_len - 1) // chunk_size |
|
num_left_chunks = torch.randint(0, max_left_chunks, |
|
(1, )).item() |
|
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size, |
|
num_left_chunks, |
|
xs.device) |
|
chunk_masks = chunk_masks.unsqueeze(0) |
|
chunk_masks = masks & chunk_masks |
|
elif static_chunk_size > 0: |
|
num_left_chunks = num_decoding_left_chunks |
|
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size, |
|
num_left_chunks, |
|
xs.device) |
|
chunk_masks = chunk_masks.unsqueeze(0) |
|
chunk_masks = masks & chunk_masks |
|
else: |
|
chunk_masks = masks |
|
return chunk_masks |
|
|
|
|
|
class ConformerEncoderLayer(nn.Module): |
|
"""Encoder layer module. |
|
Args: |
|
size (int): Input dimension. |
|
self_attn (torch.nn.Module): Self-attention module instance. |
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` |
|
instance can be used as the argument. |
|
feed_forward (torch.nn.Module): Feed-forward module instance. |
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
feed_forward_macaron (torch.nn.Module): Additional feed-forward module |
|
instance. |
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
conv_module (torch.nn.Module): Convolution module instance. |
|
`ConvlutionModule` instance can be used as the argument. |
|
dropout_rate (float): Dropout rate. |
|
normalize_before (bool): |
|
True: use layer_norm before each sub-block. |
|
False: use layer_norm after each sub-block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
self_attn: torch.nn.Module, |
|
feed_forward: Optional[nn.Module] = None, |
|
feed_forward_macaron: Optional[nn.Module] = None, |
|
conv_module: Optional[nn.Module] = None, |
|
dropout_rate: float = 0.1, |
|
normalize_before: bool = True, |
|
): |
|
"""Construct an EncoderLayer object.""" |
|
super().__init__() |
|
self.self_attn = self_attn |
|
self.feed_forward = feed_forward |
|
self.feed_forward_macaron = feed_forward_macaron |
|
self.conv_module = conv_module |
|
self.norm_ff = nn.LayerNorm(size, eps=1e-5) |
|
self.norm_mha = nn.LayerNorm(size, eps=1e-5) |
|
if feed_forward_macaron is not None: |
|
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5) |
|
self.ff_scale = 0.5 |
|
else: |
|
self.ff_scale = 1.0 |
|
if self.conv_module is not None: |
|
self.norm_conv = nn.LayerNorm(size, eps=1e-5) |
|
self.norm_final = nn.LayerNorm( |
|
size, eps=1e-5) |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.size = size |
|
self.normalize_before = normalize_before |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: torch.Tensor, |
|
pos_emb: torch.Tensor, |
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Compute encoded features. |
|
|
|
Args: |
|
x (torch.Tensor): (#batch, time, size) |
|
mask (torch.Tensor): Mask tensor for the input (#batch, time,time), |
|
(0, 0, 0) means fake mask. |
|
pos_emb (torch.Tensor): positional encoding, must not be None |
|
for ConformerEncoderLayer. |
|
mask_pad (torch.Tensor): batch padding mask used for conv module. |
|
(#batch, 1,time), (0, 0, 0) means fake mask. |
|
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE |
|
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. |
|
cnn_cache (torch.Tensor): Convolution cache in conformer layer |
|
(#batch=1, size, cache_t2) |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, size). |
|
torch.Tensor: Mask tensor (#batch, time, time). |
|
torch.Tensor: att_cache tensor, |
|
(#batch=1, head, cache_t1 + time, d_k * 2). |
|
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). |
|
""" |
|
|
|
|
|
if self.feed_forward_macaron is not None: |
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_ff_macaron(x) |
|
x = residual + self.ff_scale * self.dropout( |
|
self.feed_forward_macaron(x)) |
|
if not self.normalize_before: |
|
x = self.norm_ff_macaron(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_mha(x) |
|
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, |
|
att_cache) |
|
x = residual + self.dropout(x_att) |
|
if not self.normalize_before: |
|
x = self.norm_mha(x) |
|
|
|
|
|
|
|
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) |
|
if self.conv_module is not None: |
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_conv(x) |
|
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) |
|
x = residual + self.dropout(x) |
|
|
|
if not self.normalize_before: |
|
x = self.norm_conv(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_ff(x) |
|
|
|
x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) |
|
if not self.normalize_before: |
|
x = self.norm_ff(x) |
|
|
|
if self.conv_module is not None: |
|
x = self.norm_final(x) |
|
|
|
return x, mask, new_att_cache, new_cnn_cache |
|
|
|
|
|
|
|
class EspnetRelPositionalEncoding(torch.nn.Module): |
|
"""Relative positional encoding module (new implementation). |
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816. |
|
|
|
See : Appendix B in https://arxiv.org/abs/1901.02860 |
|
|
|
Args: |
|
d_model (int): Embedding dimension. |
|
dropout_rate (float): Dropout rate. |
|
max_len (int): Maximum input length. |
|
|
|
""" |
|
|
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): |
|
"""Construct an PositionalEncoding object.""" |
|
super(EspnetRelPositionalEncoding, self).__init__() |
|
self.d_model = d_model |
|
self.xscale = math.sqrt(self.d_model) |
|
self.dropout = torch.nn.Dropout(p=dropout_rate) |
|
self.pe = None |
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) |
|
|
|
def extend_pe(self, x: torch.Tensor): |
|
"""Reset the positional encodings.""" |
|
if self.pe is not None: |
|
|
|
|
|
if self.pe.size(1) >= x.size(1) * 2 - 1: |
|
if self.pe.dtype != x.dtype or self.pe.device != x.device: |
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device) |
|
return |
|
|
|
|
|
|
|
pe_positive = torch.zeros(x.size(1), self.d_model) |
|
pe_negative = torch.zeros(x.size(1), self.d_model) |
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, self.d_model, 2, dtype=torch.float32) |
|
* -(math.log(10000.0) / self.d_model) |
|
) |
|
pe_positive[:, 0::2] = torch.sin(position * div_term) |
|
pe_positive[:, 1::2] = torch.cos(position * div_term) |
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) |
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) |
|
|
|
|
|
|
|
|
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) |
|
pe_negative = pe_negative[1:].unsqueeze(0) |
|
pe = torch.cat([pe_positive, pe_negative], dim=1) |
|
self.pe = pe.to(device=x.device, dtype=x.dtype) |
|
|
|
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \ |
|
-> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Add positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
|
|
Returns: |
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
|
|
""" |
|
self.extend_pe(x) |
|
x = x * self.xscale |
|
pos_emb = self.position_encoding(size=x.size(1), offset=offset) |
|
return self.dropout(x), self.dropout(pos_emb) |
|
|
|
def position_encoding(self, |
|
offset: Union[int, torch.Tensor], |
|
size: int) -> torch.Tensor: |
|
""" For getting encoding in a streaming fashion |
|
|
|
Attention!!!!! |
|
we apply dropout only once at the whole utterance level in a none |
|
streaming way, but will call this function several times with |
|
increasing input size in a streaming scenario, so the dropout will |
|
be applied several times. |
|
|
|
Args: |
|
offset (int or torch.tensor): start offset |
|
size (int): required size of position encoding |
|
|
|
Returns: |
|
torch.Tensor: Corresponding encoding |
|
""" |
|
pos_emb = self.pe[ |
|
:, |
|
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size, |
|
] |
|
return pos_emb |
|
|
|
|
|
|
|
class LinearEmbed(torch.nn.Module): |
|
"""Linear transform the input without subsampling |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
"""Construct an linear object.""" |
|
super().__init__() |
|
self.out = torch.nn.Sequential( |
|
torch.nn.Linear(idim, odim), |
|
torch.nn.LayerNorm(odim, eps=1e-5), |
|
torch.nn.Dropout(dropout_rate), |
|
) |
|
self.pos_enc = pos_enc_class |
|
|
|
def position_encoding(self, offset: Union[int, torch.Tensor], |
|
size: int) -> torch.Tensor: |
|
return self.pos_enc.position_encoding(offset, size) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Input x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: linear input tensor (#batch, time', odim), |
|
where time' = time . |
|
torch.Tensor: linear input mask (#batch, 1, time'), |
|
where time' = time . |
|
|
|
""" |
|
x = self.out(x) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb |
|
|
|
|
|
ATTENTION_CLASSES = { |
|
"selfattn": MultiHeadedAttention, |
|
"rel_selfattn": RelPositionMultiHeadedAttention, |
|
} |
|
|
|
ACTIVATION_CLASSES = { |
|
"hardtanh": torch.nn.Hardtanh, |
|
"tanh": torch.nn.Tanh, |
|
"relu": torch.nn.ReLU, |
|
"selu": torch.nn.SELU, |
|
"swish": getattr(torch.nn, "SiLU", Swish), |
|
"gelu": torch.nn.GELU, |
|
} |
|
|
|
|
|
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: |
|
"""Make mask tensor containing indices of padded part. |
|
|
|
See description of make_non_pad_mask. |
|
|
|
Args: |
|
lengths (torch.Tensor): Batch of lengths (B,). |
|
Returns: |
|
torch.Tensor: Mask tensor containing indices of padded part. |
|
|
|
Examples: |
|
>>> lengths = [5, 3, 2] |
|
>>> make_pad_mask(lengths) |
|
masks = [[0, 0, 0, 0 ,0], |
|
[0, 0, 0, 1, 1], |
|
[0, 0, 1, 1, 1]] |
|
""" |
|
batch_size = lengths.size(0) |
|
max_len = max_len if max_len > 0 else lengths.max().item() |
|
seq_range = torch.arange(0, |
|
max_len, |
|
dtype=torch.int64, |
|
device=lengths.device) |
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) |
|
seq_length_expand = lengths.unsqueeze(-1) |
|
mask = seq_range_expand >= seq_length_expand |
|
return mask |
|
|
|
|
|
class ConformerEncoder(torch.nn.Module): |
|
"""Conformer encoder module.""" |
|
|
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 1024, |
|
attention_heads: int = 16, |
|
linear_units: int = 4096, |
|
num_blocks: int = 6, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
input_layer: str = 'linear', |
|
pos_enc_layer_type: str = 'rel_pos_espnet', |
|
normalize_before: bool = True, |
|
static_chunk_size: int = 1, |
|
use_dynamic_chunk: bool = False, |
|
use_dynamic_left_chunk: bool = False, |
|
positionwise_conv_kernel_size: int = 1, |
|
macaron_style: bool =False, |
|
selfattention_layer_type: str = "rel_selfattn", |
|
activation_type: str = "swish", |
|
use_cnn_module: bool = False, |
|
cnn_module_kernel: int = 15, |
|
causal: bool = False, |
|
cnn_module_norm: str = "batch_norm", |
|
key_bias: bool = True, |
|
gradient_checkpointing: bool = False, |
|
): |
|
"""Construct ConformerEncoder |
|
|
|
Args: |
|
input_size to use_dynamic_chunk, see in BaseEncoder |
|
positionwise_conv_kernel_size (int): Kernel size of positionwise |
|
conv1d layer. |
|
macaron_style (bool): Whether to use macaron style for |
|
positionwise layer. |
|
selfattention_layer_type (str): Encoder attention layer type, |
|
the parameter has no effect now, it's just for configure |
|
compatibility. #'rel_selfattn' |
|
activation_type (str): Encoder activation function type. |
|
use_cnn_module (bool): Whether to use convolution module. |
|
cnn_module_kernel (int): Kernel size of convolution module. |
|
causal (bool): whether to use causal convolution or not. |
|
key_bias: whether use bias in attention.linear_k, False for whisper models. |
|
""" |
|
super().__init__() |
|
self.output_size = output_size |
|
self.embed = LinearEmbed(input_size, output_size, dropout_rate, |
|
EspnetRelPositionalEncoding(output_size, positional_dropout_rate)) |
|
self.normalize_before = normalize_before |
|
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) |
|
self.gradient_checkpointing = gradient_checkpointing |
|
self.use_dynamic_chunk = use_dynamic_chunk |
|
|
|
self.static_chunk_size = static_chunk_size |
|
self.use_dynamic_chunk = use_dynamic_chunk |
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk |
|
activation = ACTIVATION_CLASSES[activation_type]() |
|
|
|
|
|
encoder_selfattn_layer_args = ( |
|
attention_heads, |
|
output_size, |
|
attention_dropout_rate, |
|
key_bias, |
|
) |
|
|
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
dropout_rate, |
|
activation, |
|
) |
|
|
|
convolution_layer_args = (output_size, cnn_module_kernel, activation, |
|
cnn_module_norm, causal) |
|
|
|
self.encoders = torch.nn.ModuleList([ |
|
ConformerEncoderLayer( |
|
output_size, |
|
RelPositionMultiHeadedAttention( |
|
*encoder_selfattn_layer_args), |
|
PositionwiseFeedForward(*positionwise_layer_args), |
|
PositionwiseFeedForward( |
|
*positionwise_layer_args) if macaron_style else None, |
|
ConvolutionModule( |
|
*convolution_layer_args) if use_cnn_module else None, |
|
dropout_rate, |
|
normalize_before, |
|
) for _ in range(num_blocks) |
|
]) |
|
|
|
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, |
|
pos_emb: torch.Tensor, |
|
mask_pad: torch.Tensor) -> torch.Tensor: |
|
for layer in self.encoders: |
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) |
|
return xs |
|
|
|
@torch.jit.unused |
|
def forward_layers_checkpointed(self, xs: torch.Tensor, |
|
chunk_masks: torch.Tensor, |
|
pos_emb: torch.Tensor, |
|
mask_pad: torch.Tensor) -> torch.Tensor: |
|
for layer in self.encoders: |
|
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs, |
|
chunk_masks, pos_emb, |
|
mask_pad) |
|
return xs |
|
|
|
def forward( |
|
self, |
|
xs: torch.Tensor, |
|
pad_mask: torch.Tensor, |
|
decoding_chunk_size: int = 0, |
|
num_decoding_left_chunks: int = -1, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Embed positions in tensor. |
|
|
|
Args: |
|
xs: padded input tensor (B, T, D) |
|
xs_lens: input length (B) |
|
decoding_chunk_size: decoding chunk size for dynamic chunk |
|
0: default for training, use random dynamic chunk. |
|
<0: for decoding, use full chunk. |
|
>0: for decoding, use fixed chunk size as set. |
|
num_decoding_left_chunks: number of left chunks, this is for decoding, |
|
the chunk size is decoding_chunk_size. |
|
>=0: use num_decoding_left_chunks |
|
<0: use all left chunks |
|
Returns: |
|
encoder output tensor xs, and subsampled masks |
|
xs: padded output tensor (B, T' ~= T/subsample_rate, D) |
|
masks: torch.Tensor batch padding mask after subsample |
|
(B, 1, T' ~= T/subsample_rate) |
|
NOTE(xcsong): |
|
We pass the `__call__` method of the modules instead of `forward` to the |
|
checkpointing API because `__call__` attaches all the hooks of the module. |
|
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 |
|
""" |
|
T = xs.size(1) |
|
masks = pad_mask.to(torch.bool).unsqueeze(1) |
|
xs, pos_emb = self.embed(xs) |
|
mask_pad = masks |
|
chunk_masks = add_optional_chunk_mask(xs, masks, |
|
self.use_dynamic_chunk, |
|
self.use_dynamic_left_chunk, |
|
decoding_chunk_size, |
|
self.static_chunk_size, |
|
num_decoding_left_chunks) |
|
if self.gradient_checkpointing and self.training: |
|
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb, |
|
mask_pad) |
|
else: |
|
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) |
|
if self.normalize_before: |
|
xs = self.after_norm(xs) |
|
|
|
|
|
|
|
return xs, masks |
|
|
|
|