|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.utils import logging |
|
from diffusers.models.normalization import RMSNorm |
|
|
|
|
|
try: |
|
|
|
from .customer_attention_processor import Attention, CustomLiteLAProcessor2_0, CustomerAttnProcessor2_0 |
|
except ImportError: |
|
|
|
from customer_attention_processor import Attention, CustomLiteLAProcessor2_0, CustomerAttnProcessor2_0 |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def val2list(x: list or tuple or any, repeat_time=1) -> list: |
|
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple.""" |
|
if isinstance(x, (list, tuple)): |
|
return list(x) |
|
return [x for _ in range(repeat_time)] |
|
|
|
|
|
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: |
|
"""Return tuple with min_len by repeating element at idx_repeat.""" |
|
|
|
x = val2list(x) |
|
|
|
|
|
if len(x) > 0: |
|
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] |
|
|
|
return tuple(x) |
|
|
|
|
|
def t2i_modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
|
|
def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]: |
|
if isinstance(kernel_size, tuple): |
|
return tuple([get_same_padding(ks) for ks in kernel_size]) |
|
else: |
|
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number" |
|
return kernel_size // 2 |
|
|
|
class ConvLayer(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: int, |
|
kernel_size=3, |
|
stride=1, |
|
dilation=1, |
|
groups=1, |
|
padding: Union[int, None] = None, |
|
use_bias=False, |
|
norm=None, |
|
act=None, |
|
): |
|
super().__init__() |
|
if padding is None: |
|
padding = get_same_padding(kernel_size) |
|
padding *= dilation |
|
|
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.groups = groups |
|
self.padding = padding |
|
self.use_bias = use_bias |
|
|
|
self.conv = nn.Conv1d( |
|
in_dim, |
|
out_dim, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=use_bias, |
|
) |
|
if norm is not None: |
|
self.norm = RMSNorm(out_dim, elementwise_affine=False) |
|
else: |
|
self.norm = None |
|
if act is not None: |
|
self.act = nn.SiLU(inplace=True) |
|
else: |
|
self.act = None |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.conv(x) |
|
if self.norm: |
|
x = self.norm(x) |
|
if self.act: |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class GLUMBConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: int, |
|
out_feature=None, |
|
kernel_size=3, |
|
stride=1, |
|
padding: Union[int, None] = None, |
|
use_bias=False, |
|
norm=(None, None, None), |
|
act=("silu", "silu", None), |
|
dilation=1, |
|
): |
|
out_feature = out_feature or in_features |
|
super().__init__() |
|
use_bias = val2tuple(use_bias, 3) |
|
norm = val2tuple(norm, 3) |
|
act = val2tuple(act, 3) |
|
|
|
self.glu_act = nn.SiLU(inplace=False) |
|
self.inverted_conv = ConvLayer( |
|
in_features, |
|
hidden_features * 2, |
|
1, |
|
use_bias=use_bias[0], |
|
norm=norm[0], |
|
act=act[0], |
|
) |
|
self.depth_conv = ConvLayer( |
|
hidden_features * 2, |
|
hidden_features * 2, |
|
kernel_size, |
|
stride=stride, |
|
groups=hidden_features * 2, |
|
padding=padding, |
|
use_bias=use_bias[1], |
|
norm=norm[1], |
|
act=None, |
|
dilation=dilation, |
|
) |
|
self.point_conv = ConvLayer( |
|
hidden_features, |
|
out_feature, |
|
1, |
|
use_bias=use_bias[2], |
|
norm=norm[2], |
|
act=act[2], |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x.transpose(1, 2) |
|
x = self.inverted_conv(x) |
|
x = self.depth_conv(x) |
|
|
|
x, gate = torch.chunk(x, 2, dim=1) |
|
gate = self.glu_act(gate) |
|
x = x * gate |
|
|
|
x = self.point_conv(x) |
|
x = x.transpose(1, 2) |
|
|
|
return x |
|
|
|
|
|
class LinearTransformerBlock(nn.Module): |
|
""" |
|
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning. |
|
""" |
|
def __init__( |
|
self, |
|
dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
use_adaln_single=True, |
|
cross_attention_dim=None, |
|
added_kv_proj_dim=None, |
|
context_pre_only=False, |
|
mlp_ratio=4.0, |
|
add_cross_attention=False, |
|
add_cross_attention_dim=None, |
|
qk_norm=None, |
|
): |
|
super().__init__() |
|
|
|
self.norm1 = RMSNorm(dim, elementwise_affine=False, eps=1e-6) |
|
self.attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
added_kv_proj_dim=added_kv_proj_dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
bias=True, |
|
qk_norm=qk_norm, |
|
processor=CustomLiteLAProcessor2_0(), |
|
) |
|
|
|
self.add_cross_attention = add_cross_attention |
|
self.context_pre_only = context_pre_only |
|
|
|
if add_cross_attention and add_cross_attention_dim is not None: |
|
self.cross_attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=add_cross_attention_dim, |
|
added_kv_proj_dim=add_cross_attention_dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
context_pre_only=context_pre_only, |
|
bias=True, |
|
qk_norm=qk_norm, |
|
processor=CustomerAttnProcessor2_0(), |
|
) |
|
|
|
self.norm2 = RMSNorm(dim, 1e-06, elementwise_affine=False) |
|
|
|
self.ff = GLUMBConv( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
use_bias=(True, True, False), |
|
norm=(None, None, None), |
|
act=("silu", "silu", None), |
|
) |
|
self.use_adaln_single = use_adaln_single |
|
if use_adaln_single: |
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: torch.FloatTensor = None, |
|
encoder_attention_mask: torch.FloatTensor = None, |
|
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, |
|
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, |
|
temb: torch.FloatTensor = None, |
|
): |
|
|
|
N = hidden_states.shape[0] |
|
|
|
|
|
if self.use_adaln_single: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + temb.reshape(N, 6, -1) |
|
).chunk(6, dim=1) |
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
if self.use_adaln_single: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
|
|
|
|
if not self.add_cross_attention: |
|
attn_output, encoder_hidden_states = self.attn( |
|
hidden_states=norm_hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
rotary_freqs_cis=rotary_freqs_cis, |
|
rotary_freqs_cis_cross=rotary_freqs_cis_cross, |
|
) |
|
else: |
|
attn_output, _ = self.attn( |
|
hidden_states=norm_hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
rotary_freqs_cis=rotary_freqs_cis, |
|
rotary_freqs_cis_cross=None, |
|
) |
|
|
|
if self.use_adaln_single: |
|
attn_output = gate_msa * attn_output |
|
hidden_states = attn_output + hidden_states |
|
|
|
if self.add_cross_attention: |
|
attn_output = self.cross_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
rotary_freqs_cis=rotary_freqs_cis, |
|
rotary_freqs_cis_cross=rotary_freqs_cis_cross, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
if self.use_adaln_single: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
if self.use_adaln_single: |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = hidden_states + ff_output |
|
|
|
return hidden_states |
|
|