|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional, Tuple, List, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput, is_torch_version |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps |
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin |
|
|
|
|
|
from .attention import LinearTransformerBlock, t2i_modulate |
|
from .lyrics_utils.lyric_encoder import ConformerEncoder as LyricEncoder |
|
|
|
|
|
def cross_norm(hidden_states, controlnet_input): |
|
|
|
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True) |
|
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True) |
|
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states |
|
return controlnet_input |
|
|
|
|
|
|
|
class Qwen2RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class T2IFinalLayer(nn.Module): |
|
""" |
|
The final layer of Sana. |
|
""" |
|
|
|
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256): |
|
super().__init__() |
|
self.norm_final = nn.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) |
|
self.out_channels = out_channels |
|
self.patch_size = patch_size |
|
|
|
def unpatchfy( |
|
self, |
|
hidden_states: torch.Tensor, |
|
width: int, |
|
): |
|
|
|
new_height, new_width = 1, hidden_states.size(1) |
|
hidden_states = hidden_states.reshape( |
|
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels) |
|
).contiguous() |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1]) |
|
).contiguous() |
|
if width > new_width: |
|
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0) |
|
elif width < new_width: |
|
output = output[:, :, :, :width] |
|
return output |
|
|
|
def forward(self, x, t, output_length): |
|
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) |
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
|
|
output = self.unpatchfy(x, output_length) |
|
return output |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
height=16, |
|
width=4096, |
|
patch_size=(16, 1), |
|
in_channels=8, |
|
embed_dim=1152, |
|
bias=True, |
|
): |
|
super().__init__() |
|
patch_size_h, patch_size_w = patch_size |
|
self.early_conv_layers = nn.Sequential( |
|
nn.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias), |
|
torch.nn.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True), |
|
nn.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias) |
|
) |
|
self.patch_size = patch_size |
|
self.height, self.width = height // patch_size_h, width // patch_size_w |
|
self.base_size = self.width |
|
|
|
def forward(self, latent): |
|
|
|
latent = self.early_conv_layers(latent) |
|
latent = latent.flatten(2).transpose(1, 2) |
|
return latent |
|
|
|
|
|
@dataclass |
|
class Transformer2DModelOutput(BaseOutput): |
|
|
|
sample: torch.FloatTensor |
|
proj_losses: Optional[Tuple[Tuple[str, torch.Tensor]]] = None |
|
|
|
|
|
class ACEStepTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: Optional[int] = 8, |
|
num_layers: int = 28, |
|
inner_dim: int = 1536, |
|
attention_head_dim: int = 64, |
|
num_attention_heads: int = 24, |
|
mlp_ratio: float = 4.0, |
|
out_channels: int = 8, |
|
max_position: int = 32768, |
|
rope_theta: float = 1000000.0, |
|
speaker_embedding_dim: int = 512, |
|
text_embedding_dim: int = 768, |
|
ssl_encoder_depths: List[int] = [9, 9], |
|
ssl_names: List[str] = ["mert", "m-hubert"], |
|
ssl_latent_dims: List[int] = [1024, 768], |
|
lyric_encoder_vocab_size: int = 6681, |
|
lyric_hidden_size: int = 1024, |
|
patch_size: List[int] = [16, 1], |
|
max_height: int = 16, |
|
max_width: int = 4096, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.inner_dim = inner_dim |
|
self.out_channels = out_channels |
|
self.max_position = max_position |
|
self.patch_size = patch_size |
|
|
|
self.rope_theta = rope_theta |
|
|
|
self.rotary_emb = Qwen2RotaryEmbedding( |
|
dim=self.attention_head_dim, |
|
max_position_embeddings=self.max_position, |
|
base=self.rope_theta, |
|
) |
|
|
|
|
|
self.in_channels = in_channels |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
LinearTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
mlp_ratio=mlp_ratio, |
|
add_cross_attention=True, |
|
add_cross_attention_dim=self.inner_dim, |
|
) |
|
for i in range(self.config.num_layers) |
|
] |
|
) |
|
self.num_layers = num_layers |
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim) |
|
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(self.inner_dim, 6 * self.inner_dim, bias=True)) |
|
|
|
|
|
self.speaker_embedder = nn.Linear(speaker_embedding_dim, self.inner_dim) |
|
|
|
|
|
self.genre_embedder = nn.Linear(text_embedding_dim, self.inner_dim) |
|
|
|
|
|
self.lyric_embs = nn.Embedding(lyric_encoder_vocab_size, lyric_hidden_size) |
|
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0) |
|
self.lyric_proj = nn.Linear(lyric_hidden_size, self.inner_dim) |
|
|
|
projector_dim = 2 * self.inner_dim |
|
|
|
self.projectors = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Linear(self.inner_dim, projector_dim), |
|
nn.SiLU(), |
|
nn.Linear(projector_dim, projector_dim), |
|
nn.SiLU(), |
|
nn.Linear(projector_dim, ssl_dim), |
|
) for ssl_dim in ssl_latent_dims |
|
]) |
|
|
|
self.ssl_latent_dims = ssl_latent_dims |
|
self.ssl_encoder_depths = ssl_encoder_depths |
|
|
|
self.cosine_loss = torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean') |
|
self.ssl_names = ssl_names |
|
|
|
self.proj_in = PatchEmbed( |
|
height=max_height, |
|
width=max_width, |
|
patch_size=patch_size, |
|
embed_dim=self.inner_dim, |
|
bias=True, |
|
) |
|
|
|
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: |
|
""" |
|
Sets the attention processor to use [feed forward |
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). |
|
|
|
Parameters: |
|
chunk_size (`int`, *optional*): |
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually |
|
over each tensor of dim=`dim`. |
|
dim (`int`, *optional*, defaults to `0`): |
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) |
|
or dim=1 (sequence length). |
|
""" |
|
if dim not in [0, 1]: |
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") |
|
|
|
|
|
chunk_size = chunk_size or 1 |
|
|
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, chunk_size, dim) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward_lyric_encoder( |
|
self, |
|
lyric_token_idx: Optional[torch.LongTensor] = None, |
|
lyric_mask: Optional[torch.LongTensor] = None, |
|
): |
|
|
|
lyric_embs = self.lyric_embs(lyric_token_idx) |
|
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1) |
|
prompt_prenet_out = self.lyric_proj(prompt_prenet_out) |
|
return prompt_prenet_out |
|
|
|
def encode( |
|
self, |
|
encoder_text_hidden_states: Optional[torch.Tensor] = None, |
|
text_attention_mask: Optional[torch.LongTensor] = None, |
|
speaker_embeds: Optional[torch.FloatTensor] = None, |
|
lyric_token_idx: Optional[torch.LongTensor] = None, |
|
lyric_mask: Optional[torch.LongTensor] = None, |
|
): |
|
|
|
bs = encoder_text_hidden_states.shape[0] |
|
device = encoder_text_hidden_states.device |
|
|
|
|
|
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1) |
|
speaker_mask = torch.ones(bs, 1, device=device) |
|
|
|
|
|
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states) |
|
|
|
|
|
encoder_lyric_hidden_states = self.forward_lyric_encoder( |
|
lyric_token_idx=lyric_token_idx, |
|
lyric_mask=lyric_mask, |
|
) |
|
|
|
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1) |
|
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1) |
|
return encoder_hidden_states, encoder_hidden_mask |
|
|
|
def decode( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
encoder_hidden_mask: torch.Tensor, |
|
timestep: Optional[torch.Tensor], |
|
ssl_hidden_states: Optional[List[torch.Tensor]] = None, |
|
output_length: int = 0, |
|
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, |
|
controlnet_scale: Union[float, torch.Tensor] = 1.0, |
|
return_dict: bool = True, |
|
): |
|
|
|
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype)) |
|
temb = self.t_block(embedded_timestep) |
|
|
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
if block_controlnet_hidden_states is not None: |
|
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states) |
|
hidden_states = hidden_states + control_condi * controlnet_scale |
|
|
|
inner_hidden_states = [] |
|
|
|
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1]) |
|
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1]) |
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_hidden_mask, |
|
rotary_freqs_cis=rotary_freqs_cis, |
|
rotary_freqs_cis_cross=encoder_rotary_freqs_cis, |
|
temb=temb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_hidden_mask, |
|
rotary_freqs_cis=rotary_freqs_cis, |
|
rotary_freqs_cis_cross=encoder_rotary_freqs_cis, |
|
temb=temb, |
|
) |
|
|
|
for ssl_encoder_depth in self.ssl_encoder_depths: |
|
if index_block == ssl_encoder_depth: |
|
inner_hidden_states.append(hidden_states) |
|
|
|
proj_losses = [] |
|
if len(inner_hidden_states) > 0 and ssl_hidden_states is not None and len(ssl_hidden_states) > 0: |
|
|
|
for inner_hidden_state, projector, ssl_hidden_state, ssl_name in zip(inner_hidden_states, self.projectors, ssl_hidden_states, self.ssl_names): |
|
if ssl_hidden_state is None: |
|
continue |
|
|
|
est_ssl_hidden_state = projector(inner_hidden_state) |
|
|
|
bs = inner_hidden_state.shape[0] |
|
proj_loss = 0.0 |
|
for i, (z, z_tilde) in enumerate(zip(ssl_hidden_state, est_ssl_hidden_state)): |
|
|
|
z_tilde = F.interpolate(z_tilde.unsqueeze(0).transpose(1, 2), size=len(z), mode='linear', align_corners=False).transpose(1, 2).squeeze(0) |
|
|
|
z_tilde = torch.nn.functional.normalize(z_tilde, dim=-1) |
|
z = torch.nn.functional.normalize(z, dim=-1) |
|
|
|
target = torch.ones(z.shape[0], device=z.device) |
|
proj_loss += self.cosine_loss(z, z_tilde, target) |
|
proj_losses.append((ssl_name, proj_loss / bs)) |
|
|
|
output = self.final_layer(hidden_states, embedded_timestep, output_length) |
|
if not return_dict: |
|
return (output, proj_losses) |
|
|
|
return Transformer2DModelOutput(sample=output, proj_losses=proj_losses) |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
encoder_text_hidden_states: Optional[torch.Tensor] = None, |
|
text_attention_mask: Optional[torch.LongTensor] = None, |
|
speaker_embeds: Optional[torch.FloatTensor] = None, |
|
lyric_token_idx: Optional[torch.LongTensor] = None, |
|
lyric_mask: Optional[torch.LongTensor] = None, |
|
timestep: Optional[torch.Tensor] = None, |
|
ssl_hidden_states: Optional[List[torch.Tensor]] = None, |
|
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, |
|
controlnet_scale: Union[float, torch.Tensor] = 1.0, |
|
return_dict: bool = True, |
|
): |
|
encoder_hidden_states, encoder_hidden_mask = self.encode( |
|
encoder_text_hidden_states=encoder_text_hidden_states, |
|
text_attention_mask=text_attention_mask, |
|
speaker_embeds=speaker_embeds, |
|
lyric_token_idx=lyric_token_idx, |
|
lyric_mask=lyric_mask, |
|
) |
|
|
|
output_length = hidden_states.shape[-1] |
|
|
|
output = self.decode( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_hidden_mask=encoder_hidden_mask, |
|
timestep=timestep, |
|
ssl_hidden_states=ssl_hidden_states, |
|
output_length=output_length, |
|
block_controlnet_hidden_states=block_controlnet_hidden_states, |
|
controlnet_scale=controlnet_scale, |
|
return_dict=return_dict, |
|
) |
|
|
|
return output |
|
|