from transformers import pipeline # Loading a sentiment model sentiment_model = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment") def analyze_sentiment(text): """ Uses a specialized sentiment model better suited for medical text. """ result = sentiment_model(text)[0]["label"] if result.lower() == "positive": return "Positive" elif result.lower() == "negative": return "Concerned" return "Neutral" if __name__ == "__main__": sample_text = "I've been feeling really weak for the past few days." print(f"Sentiment: {analyze_sentiment(sample_text)}")