from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "google/flan-t5-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def generate_call_summary(transcript): """ Generates a structured and useful summary of the call. """ input_text = f"Summarize this medical call conversation:\n{transcript}" inputs = tokenizer(input_text, return_tensors="pt", truncation=True) outputs = model.generate(**inputs, max_length=100, min_length=20, length_penalty=2.0, num_beams=5) return tokenizer.decode(outputs[0], skip_special_tokens=True) if __name__ == "__main__": sample_text = "Patient: Hi, I need to schedule an appointment as soon as possible. I’ve been feeling really weak and dizzy for the past few days." print(f"Call Summary: {generate_call_summary(sample_text)}")