smolite / app.py
Yuchan5386's picture
Update app.py
86c9c3c verified
raw
history blame
7.09 kB
import json
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm
import requests
import gradio as gr
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("< end >")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class GPTBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class InteractGPT(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # ๋ฐฐ์น˜1, ์‹œํ€€์Šค๊ธธ์ด max_len
_ = model(dummy_input) # ๋ชจ๋ธ์ด ๋นŒ๋“œ๋จ
model.load_weights("InteractGPT.weights.h5")
print("๋ชจ๋ธ ๊ฐ€์ค‘์น˜ ๋กœ๋“œ ์™„๋ฃŒ!")
def decode_sp_tokens(tokens):
text = ''.join(tokens).replace('โ–', ' ').strip()
return text
def generate_text_top_p(model, prompt, max_len=100, max_gen=98,
temperature=1.0, min_len=20,
repetition_penalty=1.1, top_p=0.9):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
for step in range(max_gen):
pad_len = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_logits = logits[0, len(generated) - 1].numpy()
# ๋ฐ˜๋ณต ์–ต์ œ penalty
for t in set(generated):
count = generated.count(t)
next_logits[t] /= (repetition_penalty ** count)
# ์ข…๋ฃŒ ์กฐ๊ฑด ๋ฐฉ์ง€
if len(generated) < min_len:
next_logits[end_id] -= 5.0
next_logits[pad_id] -= 10.0
# ์˜จ๋„ ์ ์šฉ
next_logits = next_logits / temperature
probs = np.exp(next_logits - np.max(next_logits))
probs /= probs.sum()
# Top-p ํ•„ํ„ฐ๋ง
sorted_idx = np.argsort(-probs)
sorted_probs = probs[sorted_idx]
cum_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cum_probs, top_p) + 1
filtered_idx = sorted_idx[:cutoff]
filtered_probs = sorted_probs[:cutoff]
filtered_probs /= filtered_probs.sum()
sampled = np.random.choice(filtered_idx, p=filtered_probs)
generated.append(int(sampled))
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
decoded = decoded.strip()
if len(generated) >= min_len and (sampled == end_id or decoded.endswith(('.', '!', '?'))):
yield decoded
break
nickname = "์‚ฌ์šฉ์ž"
def respond(message, chat_history):
message = message.replace("@์‚ฌ์šฉ์ž1@", nickname)
response = ""
for partial in generate_text_top_p(model, message):
response = partial
yield response
chat = gr.ChatInterface(
fn=respond,
title="InteractGPT",
)
chat.launch()