File size: 7,092 Bytes
f724a0c
 
 
 
 
 
be7ab48
da6a9ae
f724a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c9c3c
 
 
f724a0c
 
 
d4685ad
f724a0c
86c9c3c
 
f724a0c
86c9c3c
f724a0c
86c9c3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4685ad
f724a0c
86c9c3c
 
 
 
 
1d3aa80
86c9c3c
 
 
1d3aa80
86c9c3c
 
d4685ad
86c9c3c
 
 
 
f724a0c
86c9c3c
 
f724a0c
 
f9d7b03
9c260f1
22f49f5
54ad79e
22f49f5
86c9c3c
22f49f5
eaff888
8dc5b8f
eaff888
 
 
 
40ae10a
eaff888
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import json    
import numpy as np    
import tensorflow as tf    
from tensorflow.keras import layers    
import sentencepiece as spm    
import requests  
import gradio as gr 

  
sp = spm.SentencePieceProcessor()  
sp.load("kolig_unigram.model")  
  
pad_id = sp.piece_to_id("<pad>")  
if pad_id == -1: pad_id = 0  
start_id = sp.piece_to_id("<start>")  
if start_id == -1: start_id = 1  
end_id = sp.piece_to_id("< end >")  
if end_id == -1: end_id = 2  
unk_id = sp.piece_to_id("<unk>")  
if unk_id == -1: unk_id = 3  
  
vocab_size = sp.get_piece_size()  
max_len = 100  
  
def text_to_ids(text):  
    return sp.encode(text, out_type=int)  
  
def ids_to_text(ids):  
    return sp.decode(ids)  

class RotaryPositionalEmbedding(layers.Layer):  
    def __init__(self, dim):  
        super().__init__()  
        inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))  
        self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)  
  
    def call(self, x):  
        batch, heads, seq_len, depth = tf.unstack(tf.shape(x))  
        t = tf.range(seq_len, dtype=tf.float32)  
        freqs = tf.einsum('i,j->ij', t, self.inv_freq)  
        emb_sin = tf.sin(freqs)  
        emb_cos = tf.cos(freqs)  
        emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])  
        emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])  
        x1 = x[..., ::2]  
        x2 = x[..., 1::2]  
        x_rotated = tf.stack([  
            x1 * emb_cos - x2 * emb_sin,  
            x1 * emb_sin + x2 * emb_cos  
        ], axis=-1)  
        x_rotated = tf.reshape(x_rotated, tf.shape(x))  
        return x_rotated

class SwiGLU(tf.keras.layers.Layer):
    def __init__(self, d_model, d_ff):
        super().__init__()
        self.proj = tf.keras.layers.Dense(d_ff * 2)
        self.out = tf.keras.layers.Dense(d_model)

    def call(self, x):
        x_proj = self.proj(x)
        x_val, x_gate = tf.split(x_proj, 2, axis=-1)
        return self.out(x_val * tf.nn.silu(x_gate))
        
class GPTBlock(tf.keras.layers.Layer):
    def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):  
        super().__init__()  
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)  
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)  
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate) 
        self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu') 
        self.adapter_up = tf.keras.layers.Dense(d_model)  
  
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)  
        self.ffn = SwiGLU(d_model, d_ff)  
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate) 
        self.rope = RotaryPositionalEmbedding(d_model // num_heads)  
  
    def call(self, x, training=False):  
        x_norm = self.ln1(x)  
        b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]  
        h = self.mha.num_heads  
        d = x_norm.shape[-1] // h  
  
        qkv = tf.reshape(x_norm, [b, s, h, d])  
        qkv = tf.transpose(qkv, [0, 2, 1, 3])  
        q = self.rope(qkv)  
        k = self.rope(qkv)  
        q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])  
        k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])  
  
        attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)  
        attn_out = self.dropout1(attn_out, training=training)  

        adapter_out = self.adapter_up(self.adapter_down(attn_out))
        attn_out = attn_out + adapter_out  
  
        x = x + attn_out  
        ffn_out = self.ffn(self.ln2(x))  
        x = x + self.dropout2(ffn_out, training=training)  
        return x

class InteractGPT(tf.keras.Model):  
    def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):  
        super().__init__()  
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)  
        self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]  
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)  
  
    def call(self, x, training=False):  
        x = self.token_embedding(x)  
        for block in self.blocks:  
            x = block(x, training=training)  
        x = self.ln_f(x)  
        logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)  
        return logits  

model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)    
  
dummy_input = tf.zeros((1, max_len), dtype=tf.int32)  # 배치1, 시퀀스길이 max_len  
_ = model(dummy_input)  # 모델이 빌드됨  
model.load_weights("InteractGPT.weights.h5")  
print("모델 가중치 로드 완료!")  

def decode_sp_tokens(tokens):  
    text = ''.join(tokens).replace('▁', ' ').strip()  
    return text  

def generate_text_top_p(model, prompt, max_len=100, max_gen=98,
                        temperature=1.0, min_len=20,
                        repetition_penalty=1.1, top_p=0.9):
    model_input = text_to_ids(f"<start> {prompt} <sep>")
    model_input = model_input[:max_len]
    generated = list(model_input)

    for step in range(max_gen):
        pad_len = max(0, max_len - len(generated))
        input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
        input_tensor = tf.convert_to_tensor([input_padded])

        logits = model(input_tensor, training=False)
        next_logits = logits[0, len(generated) - 1].numpy()

        # 반복 억제 penalty
        for t in set(generated):
            count = generated.count(t)
            next_logits[t] /= (repetition_penalty ** count)

        # 종료 조건 방지
        if len(generated) < min_len:
            next_logits[end_id] -= 5.0
        next_logits[pad_id] -= 10.0

        # 온도 적용
        next_logits = next_logits / temperature
        probs = np.exp(next_logits - np.max(next_logits))
        probs /= probs.sum()

        # Top-p 필터링
        sorted_idx = np.argsort(-probs)
        sorted_probs = probs[sorted_idx]
        cum_probs = np.cumsum(sorted_probs)
        cutoff = np.searchsorted(cum_probs, top_p) + 1

        filtered_idx = sorted_idx[:cutoff]
        filtered_probs = sorted_probs[:cutoff]
        filtered_probs /= filtered_probs.sum()

        sampled = np.random.choice(filtered_idx, p=filtered_probs)
        generated.append(int(sampled))

        decoded = sp.decode(generated)
        for t in ["<start>", "<sep>", "<end>"]:
            decoded = decoded.replace(t, "")
        decoded = decoded.strip()

        if len(generated) >= min_len and (sampled == end_id or decoded.endswith(('.', '!', '?'))):
            yield decoded
            break

nickname = "사용자"

def respond(message, chat_history):
    message = message.replace("@사용자1@", nickname)
    response = ""
    for partial in generate_text_top_p(model, message):
        response = partial
        yield response

chat = gr.ChatInterface(
    fn=respond,
    title="InteractGPT",
)

chat.launch()