Spaces:
Running
Running
File size: 7,567 Bytes
f724a0c 9c260f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import json
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm
import requests
import gradio as gr
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("< end >")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class GPTBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class InteractGPT(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # ๋ฐฐ์น1, ์ํ์ค๊ธธ์ด max_len
_ = model(dummy_input) # ๋ชจ๋ธ์ด ๋น๋๋จ
model.load_weights("InteractGPT.weights.h5")
print("๋ชจ๋ธ ๊ฐ์ค์น ๋ก๋ ์๋ฃ!")
def decode_sp_tokens(tokens):
text = ''.join(tokens).replace('โ', ' ').strip()
return text
def generate_text_better_sampling(model, prompt, max_len=100, max_gen=98, top_k=50, p=0.9, temperature=0.8, min_len=20, repetition_penalty=1.2):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
text_so_far = []
for step in range(max_gen):
pad_length = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_token_logits = logits[0, len(generated) - 1].numpy()
# ๋ฐ๋ณต ํ๋ํฐ (frequency penalty)
token_counts = {}
for t in generated:
token_counts[t] = token_counts.get(t, 0) + 1
for token_id, count in token_counts.items():
next_token_logits[token_id] /= (repetition_penalty ** count)
# ์ต์ ๊ธธ์ด ๋์ผ๋ฉด ์ข
๋ฃ ํ ํฐ ํ๋ฅ ๋ฎ์ถ๊ธฐ
if len(generated) >= min_len:
next_token_logits[end_id] -= 5.0
next_token_logits[pad_id] -= 10.0
logits_temp = next_token_logits / temperature
probs = tf.nn.softmax(logits_temp).numpy()
# top-k ํํฐ๋ง
top_k_indices = np.argpartition(probs, -top_k)[-top_k:]
top_k_probs = probs[top_k_indices]
top_k_probs /= top_k_probs.sum()
# top-p ํํฐ๋ง (cumulative sum with side='left')
sorted_indices = top_k_indices[np.argsort(top_k_probs)[::-1]]
sorted_probs = np.sort(top_k_probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cumulative_probs, p, side='left') + 1
filtered_indices = sorted_indices[:cutoff]
filtered_probs = sorted_probs[:cutoff]
filtered_probs /= filtered_probs.sum()
next_token_id = np.random.choice(filtered_indices, p=filtered_probs)
generated.append(int(next_token_id))
next_word = sp.id_to_piece(int(next_token_id))
text_so_far.append(next_word)
decoded_text = decode_sp_tokens(text_so_far)
if len(generated) >= min_len and next_token_id == end_id:
break
if len(generated) >= min_len and decoded_text.endswith(('.', '!', '?', '<end>')):
break
yield decoded_text
nickname = "์ฌ์ฉ์"
def respond(message, chat_history):
message = message.replace("@์ฌ์ฉ์1@", nickname)
response = ""
for partial in generate_text_better_sampling(model, message):
response = partial
yield response
chat = gr.ChatInterface(
fn=respond,
title="InteractGPT",
)
chat.launch() |