import requests import numpy as np import tensorflow as tf from tensorflow.keras import layers import asyncio from fastapi import FastAPI, Request from fastapi.responses import StreamingResponse import sentencepiece as spm from typing import List import re app = FastAPI() dialogue_history = [] from fastapi.middleware.cors import CORSMiddleware origins = [ "https://insect5386.github.io", "https://insect5386.github.io/insect5386" ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) sp = spm.SentencePieceProcessor() sp.load("kolig_unigram.model") pad_id = sp.piece_to_id("") if pad_id == -1: pad_id = 0 start_id = sp.piece_to_id("") if start_id == -1: start_id = 1 end_id = sp.piece_to_id("") if end_id == -1: end_id = 2 unk_id = sp.piece_to_id("") if unk_id == -1: unk_id = 3 vocab_size = sp.get_piece_size() max_len = 100 def text_to_ids(text): return sp.encode(text, out_type=int) def ids_to_text(ids): return sp.decode(ids) class RotaryPositionalEmbedding(layers.Layer): def __init__(self, dim): super().__init__() inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) self.inv_freq = tf.constant(inv_freq, dtype=tf.float32) def call(self, x): batch, heads, seq_len, depth = tf.unstack(tf.shape(x)) t = tf.range(seq_len, dtype=tf.float32) freqs = tf.einsum('i,j->ij', t, self.inv_freq) emb_sin = tf.sin(freqs) emb_cos = tf.cos(freqs) emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1]) emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1]) x1 = x[..., ::2] x2 = x[..., 1::2] x_rotated = tf.stack([ x1 * emb_cos - x2 * emb_sin, x1 * emb_sin + x2 * emb_cos ], axis=-1) x_rotated = tf.reshape(x_rotated, tf.shape(x)) return x_rotated class SwiGLU(tf.keras.layers.Layer): def __init__(self, d_model, d_ff): super().__init__() self.proj = tf.keras.layers.Dense(d_ff * 2) self.out = tf.keras.layers.Dense(d_model) def call(self, x): x_proj = self.proj(x) x_val, x_gate = tf.split(x_proj, 2, axis=-1) return self.out(x_val * tf.nn.silu(x_gate)) class GPTBlock(tf.keras.layers.Layer): def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64): super().__init__() self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5) self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads) self.dropout1 = tf.keras.layers.Dropout(dropout_rate) self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu') self.adapter_up = tf.keras.layers.Dense(d_model) self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5) self.ffn = SwiGLU(d_model, d_ff) self.dropout2 = tf.keras.layers.Dropout(dropout_rate) self.rope = RotaryPositionalEmbedding(d_model // num_heads) def call(self, x, training=False): x_norm = self.ln1(x) b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2] h = self.mha.num_heads d = x_norm.shape[-1] // h qkv = tf.reshape(x_norm, [b, s, h, d]) qkv = tf.transpose(qkv, [0, 2, 1, 3]) q = self.rope(qkv) k = self.rope(qkv) q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d]) k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d]) attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training) attn_out = self.dropout1(attn_out, training=training) adapter_out = self.adapter_up(self.adapter_down(attn_out)) attn_out = attn_out + adapter_out x = x + attn_out ffn_out = self.ffn(self.ln2(x)) x = x + self.dropout2(ffn_out, training=training) return x class InteractGPT(tf.keras.Model): def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1): super().__init__() self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model) self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)] self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5) def call(self, x, training=False): x = self.token_embedding(x) for block in self.blocks: x = block(x, training=training) x = self.ln_f(x) logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True) return logits model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6) dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # 배치1, 시퀀스길이 max_len _ = model(dummy_input) # 모델이 빌드됨 model.load_weights("InteractGPT.weights.h5") print("모델 가중치 로드 완료!") import re import math import numpy as np import requests import tensorflow as tf from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from fastapi import Request from fastapi.responses import PlainTextResponse def is_greedy_response_acceptable(text): text = text.strip() # 너무 짧은 문장 거르기 if len(text) < 5: return False # 단어 수 너무 적은 것도 거름 if len(text.split()) < 3: return False # ㅋㅋㅋ 같은 자모 연속만 있으면 거름 (단, 'ㅋㅋ' 포함되면 허용) if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', text) and 'ㅋㅋ' not in text: return False # 문장 끝이 어색한 경우 (다/요/죠 등 일반적 형태로 끝나지 않으면 거름) if not re.search(r'(다|요|죠|다\.|요\.|죠\.|다!|요!|죠!|\!|\?|\.)$', text): return False return True def generate_text_greedy_strong(model, prompt, max_len=100, max_gen=98, repetition_penalty=1.2, min_len=20): model_input = text_to_ids(f" {prompt} ") model_input = model_input[:max_len] generated = list(model_input) for _ in range(max_gen): pad_len = max(0, max_len - len(generated)) input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id) input_tensor = tf.convert_to_tensor([input_padded]) logits = model(input_tensor, training=False) next_logits = logits[0, len(generated) - 1].numpy() # Repetition Penalty for t in set(generated): count = generated.count(t) next_logits[t] /= (repetition_penalty ** count) # Stop token filtering stop_tokens = ["음", "어", "그", "뭐지", "..."] for tok in stop_tokens: tok_id = sp.piece_to_id(tok) next_logits[tok_id] -= 5.0 next_logits[pad_id] -= 10.0 next_token = np.argmax(next_logits) generated.append(int(next_token)) decoded = sp.decode(generated) for t in ["", "", ""]: decoded = decoded.replace(t, "") decoded = decoded.strip() if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('요', '다', '.', '!', '?'))): if is_greedy_response_acceptable(decoded): return decoded else: continue return sp.decode(generated) def mismatch_tone(input_text, output_text): if "ㅋㅋ" in input_text and not re.search(r'ㅋㅋ|ㅎ|재밌|놀|만나|맛집|여행', output_text): return True return False # 유효한 응답인지 검사 def is_valid_response(response): if len(response.strip()) < 2: return False if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', response): return False if len(response.split()) < 2: return False if response.count(' ') < 2: return False if any(tok in response.lower() for tok in ['hello', 'this', 'ㅋㅋ']): return False return True # 위키 요약 관련 def extract_main_query(text): sentences = re.split(r'[.?!]\s*', text) sentences = [s.strip() for s in sentences if s.strip()] if not sentences: return text last = sentences[-1] last = re.sub(r'[^가-힣a-zA-Z0-9 ]', '', last) particles = ['이', '가', '은', '는', '을', '를', '의', '에서', '에게', '한테', '보다'] for p in particles: last = re.sub(rf'\b(\w+){p}\b', r'\1', last) return last.strip() def get_wikipedia_summary(query): cleaned_query = extract_main_query(query) url = f"https://ko.wikipedia.org/api/rest_v1/page/summary/{cleaned_query}" res = requests.get(url) if res.status_code == 200: return res.json().get("extract", "요약 정보를 찾을 수 없습니다.") else: return "위키백과에서 정보를 가져올 수 없습니다." def textrank_summarize(text, top_n=3): sentences = re.split(r'(?<=[.!?])\s+', text.strip()) sentences = [s.strip() for s in sentences if len(s.strip()) > 10] if len(sentences) <= top_n: return text vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(sentences) sim_matrix = cosine_similarity(tfidf_matrix) np.fill_diagonal(sim_matrix, 0) def pagerank(matrix, damping=0.85, max_iter=100, tol=1e-4): N = matrix.shape[0] ranks = np.ones(N) / N row_sums = np.sum(matrix, axis=1) row_sums[row_sums == 0] = 1 for _ in range(max_iter): prev_ranks = ranks.copy() for i in range(N): incoming = matrix[:, i] ranks[i] = (1 - damping) / N + damping * np.sum(incoming * prev_ranks / row_sums) if np.linalg.norm(ranks - prev_ranks) < tol: break return ranks scores = pagerank(sim_matrix) ranked_idx = np.argsort(scores)[::-1] selected_idx = sorted(ranked_idx[:top_n]) summary = ' '.join([sentences[i] for i in selected_idx]) return summary def summarize_from_wikipedia(query, top_n=3): raw_summary = get_wikipedia_summary(query) return textrank_summarize(raw_summary, top_n=top_n) def build_contexted_prompt(history: List[str], user_input: str): # 최근 대화 3개를 합쳐서 요약 recent = ' '.join(history[-3:]) summary = textrank_summarize(recent, top_n=2) # 요약 + 최신 사용자 입력을 같이 던져줌 prompt = f"{summary} {user_input}" return prompt # 의도 분류기 def simple_intent_classifier(text): text = text.lower() greet_keywords = ["안녕", "반가워", "이름", "누구", "소개", "어디서 왔", "정체", "몇 살", "너 뭐야"] info_keywords = ["설명", "정보", "무엇", "뭐야", "어디", "누구", "왜", "어떻게", "종류", "개념"] math_keywords = ["더하기", "빼기", "곱하기", "나누기", "루트", "제곱", "+", "-", "*", "/", "=", "^", "√", "계산", "몇이야", "얼마야"] if any(kw in text for kw in greet_keywords): return "인사" elif any(kw in text for kw in info_keywords): return "정보질문" elif any(kw in text for kw in math_keywords): return "수학질문" else: return "일상대화" def parse_math_question(text): text = text.replace("곱하기", "*").replace("더하기", "+").replace("빼기", "-").replace("나누기", "/").replace("제곱", "*2") text = re.sub(r'루트\s(\d+)', r'math.sqrt(\1)', text) try: result = eval(text) return f"정답은 {result}입니다." except: return "계산할 수 없는 수식이에요. 다시 한번 확인해 주세요!" # respond 함수 수정 def respond(input_text): global dialogue_history intent = simple_intent_classifier(input_text) if "이름" in input_text: return "제 이름은 Ector.V입니다." if "누구" in input_text: return "저는 Ector.V라고 해요." if intent == "수학질문": dialogue_history.append(f"사용자: {input_text}") response = parse_math_question(input_text) dialogue_history.append(f"Ector: {response}") return response if intent == "인사": response = "반가워요! 무엇을 도와드릴까요?" dialogue_history.append(f"사용자: {input_text}") dialogue_history.append(f"Ector: {response}") return response if intent == "정보질문": keyword = re.sub(r"(에 대해|에 대한|에 대해서)?\s*(설명해줘|알려줘|뭐야|개념|정의|정보)?", "", input_text).strip() if not keyword: return "어떤 주제에 대해 궁금한가요?" summary = summarize_from_wikipedia(keyword) response = f"{summary}\n다른 궁금한 점 있으신가요?" dialogue_history.append(f"사용자: {input_text}") dialogue_history.append(f"Ector: {response}") return response # 일상 대화: 요약 기반 컨텍스트 생성 contexted_prompt = build_contexted_prompt(dialogue_history, input_text) response = generate_text_greedy_strong(model, contexted_prompt) # fallback if not is_valid_response(response) or mismatch_tone(input_text, response): response = generate_text_greedy_strong(model, contexted_prompt) # 히스토리 추가 dialogue_history.append(f"사용자: {input_text}") dialogue_history.append(f"Ector: {response}") return response @app.get("/generate", response_class=PlainTextResponse) async def generate(request: Request): prompt = request.query_params.get("prompt", "안녕하세요") response_text = respond(prompt) return response_text