InteractGPT-API / api.py
Yuchan5386's picture
Update api.py
d348825 verified
raw
history blame
9.36 kB
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import sentencepiece as spm
app = FastAPI()
from fastapi.middleware.cors import CORSMiddleware
origins = [
"https://insect5386.github.io",
"https://insect5386.github.io/insect5386"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class GPTBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class InteractGPT(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # 배치1, 시퀀스길이 max_len
_ = model(dummy_input) # 모델이 빌드됨
model.load_weights("InteractGPT.weights.h5")
print("모델 가중치 로드 완료!")
def generate_text_mirostat_top_p(model, prompt, max_len=100, max_gen=98,
temperature=1.0, min_len=20,
repetition_penalty=1.2, eta=0.1, m=100, p=0.9):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
tau = 5.0 # 초기 목표 surprise
for step in range(max_gen):
pad_length = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_token_logits = logits[0, len(generated) - 1].numpy()
# 반복 페널티 적용
token_counts = {}
for t in generated:
token_counts[t] = token_counts.get(t, 0) + 1
for token_id, count in token_counts.items():
next_token_logits[token_id] /= (repetition_penalty ** count)
# 최소 길이 넘으면 종료 토큰 확률 낮추기
if len(generated) >= min_len:
next_token_logits[end_id] -= 5.0
next_token_logits[pad_id] -= 10.0
# 온도 조절
next_token_logits = next_token_logits / temperature
# --- 미로스타트 + Top-p 샘플링 ---
logits_stable = next_token_logits - np.max(next_token_logits)
probs = np.exp(logits_stable)
probs /= probs.sum()
# 1. mirostat top-m 후보 추리기
sorted_indices = np.argsort(-probs)
top_indices = sorted_indices[:m]
top_probs = probs[top_indices]
top_probs /= top_probs.sum()
# 2. mirostat 샘플링
sampled_index = np.random.choice(top_indices, p=top_probs)
sampled_prob = probs[sampled_index]
observed_surprise = -np.log(sampled_prob + 1e-9)
tau += eta * (observed_surprise - tau)
# 3. top-p 필터링
sorted_top_indices = top_indices[np.argsort(-top_probs)]
sorted_top_probs = np.sort(top_probs)[::-1]
cumulative_probs = np.cumsum(sorted_top_probs)
cutoff = np.searchsorted(cumulative_probs, p, side='left') + 1
filtered_indices = sorted_top_indices[:cutoff]
filtered_probs = sorted_top_probs[:cutoff]
filtered_probs /= filtered_probs.sum()
# 4. 최종 토큰 샘플링
final_token = np.random.choice(filtered_indices, p=filtered_probs)
generated.append(int(final_token))
decoded_text = sp.decode(generated)
# 특수 토큰 제거
for token in ["<start>", "<sep>", "<end>"]:
decoded_text = decoded_text.replace(token, "")
decoded_text = decoded_text.strip()
if len(generated) >= min_len and (final_token == end_id or decoded_text.endswith(('.', '!', '?', '<end>'))):
yield decoded_text
break
async def async_generator_wrapper(prompt: str):
gen = generate_text_mirostat_top_p(model, prompt)
for text_piece in gen:
yield text_piece
await asyncio.sleep(0.1)
@app.get("/generate")
async def generate(request: Request):
prompt = request.query_params.get("prompt", "안녕하세요")
return StreamingResponse(async_generator_wrapper(prompt), media_type="text/plain")