File size: 8,628 Bytes
009dbf5
f2dad0f
009dbf5
 
 
 
 
 
 
f2dad0f
 
009dbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2dad0f
009dbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2dad0f
009dbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca170ad
 
009dbf5
 
 
ca170ad
009dbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import asyncio
import json    
import numpy as np    
import tensorflow as tf    
from tensorflow.keras import layers    
import sentencepiece as spm    
import requests  

app = FastAPI()
  
sp = spm.SentencePieceProcessor()  
sp.load("kolig_unigram.model")  
  
pad_id = sp.piece_to_id("<pad>")  
if pad_id == -1: pad_id = 0  
start_id = sp.piece_to_id("<start>")  
if start_id == -1: start_id = 1  
end_id = sp.piece_to_id("< end >")  
if end_id == -1: end_id = 2  
unk_id = sp.piece_to_id("<unk>")  
if unk_id == -1: unk_id = 3  
  
vocab_size = sp.get_piece_size()  
max_len = 100  
  
def text_to_ids(text):  
    return sp.encode(text, out_type=int)  
  
def ids_to_text(ids):  
    return sp.decode(ids)  

class RotaryPositionalEmbedding(layers.Layer):  
    def __init__(self, dim):  
        super().__init__()  
        inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))  
        self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)  
  
    def call(self, x):  
        batch, heads, seq_len, depth = tf.unstack(tf.shape(x))  
        t = tf.range(seq_len, dtype=tf.float32)  
        freqs = tf.einsum('i,j->ij', t, self.inv_freq)  
        emb_sin = tf.sin(freqs)  
        emb_cos = tf.cos(freqs)  
        emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])  
        emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])  
        x1 = x[..., ::2]  
        x2 = x[..., 1::2]  
        x_rotated = tf.stack([  
            x1 * emb_cos - x2 * emb_sin,  
            x1 * emb_sin + x2 * emb_cos  
        ], axis=-1)  
        x_rotated = tf.reshape(x_rotated, tf.shape(x))  
        return x_rotated

class SwiGLU(tf.keras.layers.Layer):
    def __init__(self, d_model, d_ff):
        super().__init__()
        self.proj = tf.keras.layers.Dense(d_ff * 2)
        self.out = tf.keras.layers.Dense(d_model)

    def call(self, x):
        x_proj = self.proj(x)
        x_val, x_gate = tf.split(x_proj, 2, axis=-1)
        return self.out(x_val * tf.nn.silu(x_gate))
        
class GPTBlock(tf.keras.layers.Layer):
    def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):  
        super().__init__()  
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)  
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)  
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate) 
        self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu') 
        self.adapter_up = tf.keras.layers.Dense(d_model)  
  
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)  
        self.ffn = SwiGLU(d_model, d_ff)  
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate) 
        self.rope = RotaryPositionalEmbedding(d_model // num_heads)  
  
    def call(self, x, training=False):  
        x_norm = self.ln1(x)  
        b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]  
        h = self.mha.num_heads  
        d = x_norm.shape[-1] // h  
  
        qkv = tf.reshape(x_norm, [b, s, h, d])  
        qkv = tf.transpose(qkv, [0, 2, 1, 3])  
        q = self.rope(qkv)  
        k = self.rope(qkv)  
        q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])  
        k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])  
  
        attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)  
        attn_out = self.dropout1(attn_out, training=training)  

        adapter_out = self.adapter_up(self.adapter_down(attn_out))
        attn_out = attn_out + adapter_out  
  
        x = x + attn_out  
        ffn_out = self.ffn(self.ln2(x))  
        x = x + self.dropout2(ffn_out, training=training)  
        return x

class InteractGPT(tf.keras.Model):  
    def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):  
        super().__init__()  
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)  
        self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]  
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)  
  
    def call(self, x, training=False):  
        x = self.token_embedding(x)  
        for block in self.blocks:  
            x = block(x, training=training)  
        x = self.ln_f(x)  
        logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)  
        return logits  

model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)    
  
dummy_input = tf.zeros((1, max_len), dtype=tf.int32)  # 배치1, 시퀀스길이 max_len  
_ = model(dummy_input)  # 모델이 빌드됨  
model.load_weights("InteractGPT.weights.h5")  
print("모델 가중치 로드 완료!")  

def decode_sp_tokens(tokens):  
    text = ''.join(tokens).replace('▁', ' ').strip()  
    return text  

def generate_text_mirostat_top_p(model, prompt, max_len=100, max_gen=98,
                                 temperature=1.0, min_len=20,
                                 repetition_penalty=1.2, eta=0.1, m=100, p=0.9):
    model_input = text_to_ids(f"<start> {prompt} <sep>")
    model_input = model_input[:max_len]
    generated = list(model_input)

    tau = 5.0  # 초기 목표 surprise

    for step in range(max_gen):
        pad_length = max(0, max_len - len(generated))
        input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)
        input_tensor = tf.convert_to_tensor([input_padded])
        logits = model(input_tensor, training=False)
        next_token_logits = logits[0, len(generated) - 1].numpy()

        # 반복 페널티 적용
        token_counts = {}
        for t in generated:
            token_counts[t] = token_counts.get(t, 0) + 1
        for token_id, count in token_counts.items():
            next_token_logits[token_id] /= (repetition_penalty ** count)

        # 최소 길이 넘으면 종료 토큰 확률 낮추기
        if len(generated) >= min_len:
            next_token_logits[end_id] -= 5.0
        next_token_logits[pad_id] -= 10.0

        # 온도 조절
        next_token_logits = next_token_logits / temperature

        # --- 미로스타트 + Top-p 샘플링 시작 ---
        logits_stable = next_token_logits - np.max(next_token_logits)
        probs = np.exp(logits_stable)
        probs /= probs.sum()

        # 1. mirostat top-m 후보 추리기
        sorted_indices = np.argsort(-probs)
        top_indices = sorted_indices[:m]
        top_probs = probs[top_indices]
        top_probs /= top_probs.sum()

        # 2. mirostat 샘플링
        sampled_index = np.random.choice(top_indices, p=top_probs)
        sampled_prob = probs[sampled_index]
        observed_surprise = -np.log(sampled_prob + 1e-9)
        tau += eta * (observed_surprise - tau)

        # 3. top-p 필터링
        sorted_top_indices = top_indices[np.argsort(-top_probs)]
        sorted_top_probs = np.sort(top_probs)[::-1]
        cumulative_probs = np.cumsum(sorted_top_probs)
        cutoff = np.searchsorted(cumulative_probs, p, side='left') + 1
        filtered_indices = sorted_top_indices[:cutoff]
        filtered_probs = sorted_top_probs[:cutoff]
        filtered_probs /= filtered_probs.sum()

        # 4. 최종 토큰은 filtered 집합에서 다시 샘플링
        final_token = np.random.choice(filtered_indices, p=filtered_probs)

        generated.append(int(final_token))

        next_word = sp.id_to_piece(int(final_token))
        decoded_piece = decode_sp_tokens([next_word])  # << 요것만 바뀐 부분!
        yield decoded_piece  # 누적 텍스트가 아니라, 새로 생성된 토큰만 출력!

        if len(generated) >= min_len and final_token == end_id:
            break
        if len(generated) >= min_len and decoded_piece.endswith(('.', '!', '?', '<end>')):
            break

async def async_generator_wrapper(prompt: str):
    # 동기 제너레이터를 비동기로 감싸기
    loop = asyncio.get_event_loop()
    gen = generate_text_mirostat_top_p(model, prompt)
    
    for text_piece in gen:
        yield text_piece
        # 토큰 생성 속도 조절 (0.1초 딜레이)
        await asyncio.sleep(0.1)

@app.get("/generate")
async def generate(request: Request):
    # 쿼리 파라미터로 prompt 받음, 없으면 기본값
    prompt = request.query_params.get("prompt", "안녕하세요")
    
    # 스트리밍 응답으로 보냄
    return StreamingResponse(async_generator_wrapper(prompt), media_type="text/plain")