Spaces:
Sleeping
Sleeping
File size: 8,628 Bytes
009dbf5 f2dad0f 009dbf5 f2dad0f 009dbf5 f2dad0f 009dbf5 f2dad0f 009dbf5 ca170ad 009dbf5 ca170ad 009dbf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import asyncio
import json
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm
import requests
app = FastAPI()
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("< end >")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class GPTBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class InteractGPT(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # 배치1, 시퀀스길이 max_len
_ = model(dummy_input) # 모델이 빌드됨
model.load_weights("InteractGPT.weights.h5")
print("모델 가중치 로드 완료!")
def decode_sp_tokens(tokens):
text = ''.join(tokens).replace('▁', ' ').strip()
return text
def generate_text_mirostat_top_p(model, prompt, max_len=100, max_gen=98,
temperature=1.0, min_len=20,
repetition_penalty=1.2, eta=0.1, m=100, p=0.9):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
tau = 5.0 # 초기 목표 surprise
for step in range(max_gen):
pad_length = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_token_logits = logits[0, len(generated) - 1].numpy()
# 반복 페널티 적용
token_counts = {}
for t in generated:
token_counts[t] = token_counts.get(t, 0) + 1
for token_id, count in token_counts.items():
next_token_logits[token_id] /= (repetition_penalty ** count)
# 최소 길이 넘으면 종료 토큰 확률 낮추기
if len(generated) >= min_len:
next_token_logits[end_id] -= 5.0
next_token_logits[pad_id] -= 10.0
# 온도 조절
next_token_logits = next_token_logits / temperature
# --- 미로스타트 + Top-p 샘플링 시작 ---
logits_stable = next_token_logits - np.max(next_token_logits)
probs = np.exp(logits_stable)
probs /= probs.sum()
# 1. mirostat top-m 후보 추리기
sorted_indices = np.argsort(-probs)
top_indices = sorted_indices[:m]
top_probs = probs[top_indices]
top_probs /= top_probs.sum()
# 2. mirostat 샘플링
sampled_index = np.random.choice(top_indices, p=top_probs)
sampled_prob = probs[sampled_index]
observed_surprise = -np.log(sampled_prob + 1e-9)
tau += eta * (observed_surprise - tau)
# 3. top-p 필터링
sorted_top_indices = top_indices[np.argsort(-top_probs)]
sorted_top_probs = np.sort(top_probs)[::-1]
cumulative_probs = np.cumsum(sorted_top_probs)
cutoff = np.searchsorted(cumulative_probs, p, side='left') + 1
filtered_indices = sorted_top_indices[:cutoff]
filtered_probs = sorted_top_probs[:cutoff]
filtered_probs /= filtered_probs.sum()
# 4. 최종 토큰은 filtered 집합에서 다시 샘플링
final_token = np.random.choice(filtered_indices, p=filtered_probs)
generated.append(int(final_token))
next_word = sp.id_to_piece(int(final_token))
decoded_piece = decode_sp_tokens([next_word]) # << 요것만 바뀐 부분!
yield decoded_piece # 누적 텍스트가 아니라, 새로 생성된 토큰만 출력!
if len(generated) >= min_len and final_token == end_id:
break
if len(generated) >= min_len and decoded_piece.endswith(('.', '!', '?', '<end>')):
break
async def async_generator_wrapper(prompt: str):
# 동기 제너레이터를 비동기로 감싸기
loop = asyncio.get_event_loop()
gen = generate_text_mirostat_top_p(model, prompt)
for text_piece in gen:
yield text_piece
# 토큰 생성 속도 조절 (0.1초 딜레이)
await asyncio.sleep(0.1)
@app.get("/generate")
async def generate(request: Request):
# 쿼리 파라미터로 prompt 받음, 없으면 기본값
prompt = request.query_params.get("prompt", "안녕하세요")
# 스트리밍 응답으로 보냄
return StreamingResponse(async_generator_wrapper(prompt), media_type="text/plain") |