File size: 8,301 Bytes
009dbf5
f2dad0f
009dbf5
b2b2dad
 
 
 
f2dad0f
 
b2b2dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009dbf5
f2dad0f
009dbf5
 
 
 
 
 
 
 
 
 
b2b2dad
009dbf5
b2b2dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009dbf5
 
b2b2dad
 
 
 
 
009dbf5
 
b2b2dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6a990
 
bbe88ff
7d6a990
bbe88ff
 
 
 
 
7d6a990
bbe88ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6a990
 
 
 
 
 
bbe88ff
7d6a990
bbe88ff
 
 
 
7d6a990
 
 
 
 
 
 
 
 
5480bd4
009dbf5
 
 
7d6a990
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import asyncio
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm

app = FastAPI()

# SentencePiece 로드
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")

pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3

vocab_size = sp.get_piece_size()
max_len = 100

def text_to_ids(text):
    return sp.encode(text, out_type=int)

def ids_to_text(ids):
    return sp.decode(ids)

class RotaryPositionalEmbedding(layers.Layer):
    def __init__(self, dim):
        super().__init__()
        inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
        self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)

    def call(self, x):
        batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
        t = tf.range(seq_len, dtype=tf.float32)
        freqs = tf.einsum('i,j->ij', t, self.inv_freq)
        emb_sin = tf.sin(freqs)
        emb_cos = tf.cos(freqs)
        emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
        emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
        x1 = x[..., ::2]
        x2 = x[..., 1::2]
        x_rotated = tf.stack([
            x1 * emb_cos - x2 * emb_sin,
            x1 * emb_sin + x2 * emb_cos
        ], axis=-1)
        x_rotated = tf.reshape(x_rotated, tf.shape(x))
        return x_rotated

class SwiGLU(tf.keras.layers.Layer):
    def __init__(self, d_model, d_ff):
        super().__init__()
        self.proj = tf.keras.layers.Dense(d_ff * 2)
        self.out = tf.keras.layers.Dense(d_model)

    def call(self, x):
        x_proj = self.proj(x)
        x_val, x_gate = tf.split(x_proj, 2, axis=-1)
        return self.out(x_val * tf.nn.silu(x_gate))

class GPTBlock(tf.keras.layers.Layer):
    def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
        super().__init__()
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
        self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
        self.adapter_up = tf.keras.layers.Dense(d_model)

        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
        self.ffn = SwiGLU(d_model, d_ff)
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
        self.rope = RotaryPositionalEmbedding(d_model // num_heads)

    def call(self, x, training=False):
        x_norm = self.ln1(x)
        b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
        h = self.mha.num_heads
        d = x_norm.shape[-1] // h

        qkv = tf.reshape(x_norm, [b, s, h, d])
        qkv = tf.transpose(qkv, [0, 2, 1, 3])
        q = self.rope(qkv)
        k = self.rope(qkv)
        q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
        k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])

        attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
        attn_out = self.dropout1(attn_out, training=training)

        adapter_out = self.adapter_up(self.adapter_down(attn_out))
        attn_out = attn_out + adapter_out

        x = x + attn_out
        ffn_out = self.ffn(self.ln2(x))
        x = x + self.dropout2(ffn_out, training=training)
        return x

class InteractGPT(tf.keras.Model):
    def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
        super().__init__()
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
        self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)

    def call(self, x, training=False):
        x = self.token_embedding(x)
        for block in self.blocks:
            x = block(x, training=training)
        x = self.ln_f(x)
        logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
        return logits

model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)

dummy_input = tf.zeros((1, max_len), dtype=tf.int32)
_ = model(dummy_input)
model.load_weights("InteractGPT.weights.h5")
print("모델 가중치 로드 완료!")


async def generate_text_mirostat_top_p_with_buffer(model, prompt, max_len=100, max_gen=98,    
                                 temperature=1.0, min_len=20,    
                                 repetition_penalty=1.2, eta=0.1, m=100, p=0.9, buffer_size=3):    
    model_input = text_to_ids(f"<start> {prompt} <sep>")    
    model_input = model_input[:max_len]    
    generated = list(model_input)    
    
    tau = 5.0  # 초기 목표 surprise    
    buffer_tokens = []    
    
    for step in range(max_gen):    
        pad_length = max(0, max_len - len(generated))    
        input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)    
        input_tensor = tf.convert_to_tensor([input_padded])    
        logits = model(input_tensor, training=False)    
        next_token_logits = logits[0, len(generated) - 1].numpy()    
    
        # 반복 페널티 적용    
        token_counts = {}    
        for t in generated:    
            token_counts[t] = token_counts.get(t, 0) + 1    
        for token_id, count in token_counts.items():    
            next_token_logits[token_id] /= (repetition_penalty ** count)    
    
        if len(generated) >= min_len:    
            next_token_logits[end_id] -= 5.0    
        next_token_logits[pad_id] -= 10.0    
    
        next_token_logits = next_token_logits / temperature    
    
        logits_stable = next_token_logits - np.max(next_token_logits)    
        probs = np.exp(logits_stable)    
        probs /= probs.sum()    
    
        sorted_indices = np.argsort(-probs)    
        top_indices = sorted_indices[:m]    
        top_probs = probs[top_indices]    
        top_probs /= top_probs.sum()    
    
        sampled_index = np.random.choice(top_indices, p=top_probs)    
        sampled_prob = probs[sampled_index]    
        observed_surprise = -np.log(sampled_prob + 1e-9)    
        tau += eta * (observed_surprise - tau)    
    
        sorted_top_indices = top_indices[np.argsort(-top_probs)]    
        sorted_top_probs = np.sort(top_probs)[::-1]    
        cumulative_probs = np.cumsum(sorted_top_probs)    
        cutoff = np.searchsorted(cumulative_probs, p, side='left') + 1    
        filtered_indices = sorted_top_indices[:cutoff]    
        filtered_probs = sorted_top_probs[:cutoff]    
        filtered_probs /= filtered_probs.sum()    
    
        final_token = np.random.choice(filtered_indices, p=filtered_probs)    
    
        if final_token == end_id:    
            # 버퍼에 남은 거 다 출력    
            if buffer_tokens:    
                decoded = sp.decode(buffer_tokens)    
                for token in ["<start>", "<sep>", "<end>"]:    
                    decoded = decoded.replace(token, "")    
                yield decoded.strip()    
            break    
    
        if final_token in [start_id, pad_id] or sp.id_to_piece(final_token) == "<sep>":    
            continue    
    
        generated.append(int(final_token))    
        buffer_tokens.append(final_token)    
    
        if len(buffer_tokens) >= buffer_size or sp.id_to_piece(final_token).endswith("▁"):    
            # 띄어쓰기 있는 토큰 나오거나 버퍼 꽉 찼으면 출력    
            decoded = sp.decode(buffer_tokens)    
            for token in ["<start>", "<sep>", "<end>"]:    
                decoded = decoded.replace(token, "")    
            yield decoded.strip()    
            buffer_tokens = []
        
@app.get("/generate")
async def generate(request: Request):
    prompt = request.query_params.get("prompt", "안녕하세요")
    return StreamingResponse(generate_text_mirostat_top_p_with_buffer(prompt), media_type="text/plain")