Spaces:
Sleeping
Sleeping
File size: 8,301 Bytes
009dbf5 f2dad0f 009dbf5 b2b2dad f2dad0f b2b2dad 009dbf5 f2dad0f 009dbf5 b2b2dad 009dbf5 b2b2dad 009dbf5 b2b2dad 009dbf5 b2b2dad 7d6a990 bbe88ff 7d6a990 bbe88ff 7d6a990 bbe88ff 7d6a990 bbe88ff 7d6a990 bbe88ff 7d6a990 5480bd4 009dbf5 7d6a990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import asyncio
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm
app = FastAPI()
# SentencePiece 로드
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class GPTBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class InteractGPT(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32)
_ = model(dummy_input)
model.load_weights("InteractGPT.weights.h5")
print("모델 가중치 로드 완료!")
async def generate_text_mirostat_top_p_with_buffer(model, prompt, max_len=100, max_gen=98,
temperature=1.0, min_len=20,
repetition_penalty=1.2, eta=0.1, m=100, p=0.9, buffer_size=3):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
tau = 5.0 # 초기 목표 surprise
buffer_tokens = []
for step in range(max_gen):
pad_length = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_token_logits = logits[0, len(generated) - 1].numpy()
# 반복 페널티 적용
token_counts = {}
for t in generated:
token_counts[t] = token_counts.get(t, 0) + 1
for token_id, count in token_counts.items():
next_token_logits[token_id] /= (repetition_penalty ** count)
if len(generated) >= min_len:
next_token_logits[end_id] -= 5.0
next_token_logits[pad_id] -= 10.0
next_token_logits = next_token_logits / temperature
logits_stable = next_token_logits - np.max(next_token_logits)
probs = np.exp(logits_stable)
probs /= probs.sum()
sorted_indices = np.argsort(-probs)
top_indices = sorted_indices[:m]
top_probs = probs[top_indices]
top_probs /= top_probs.sum()
sampled_index = np.random.choice(top_indices, p=top_probs)
sampled_prob = probs[sampled_index]
observed_surprise = -np.log(sampled_prob + 1e-9)
tau += eta * (observed_surprise - tau)
sorted_top_indices = top_indices[np.argsort(-top_probs)]
sorted_top_probs = np.sort(top_probs)[::-1]
cumulative_probs = np.cumsum(sorted_top_probs)
cutoff = np.searchsorted(cumulative_probs, p, side='left') + 1
filtered_indices = sorted_top_indices[:cutoff]
filtered_probs = sorted_top_probs[:cutoff]
filtered_probs /= filtered_probs.sum()
final_token = np.random.choice(filtered_indices, p=filtered_probs)
if final_token == end_id:
# 버퍼에 남은 거 다 출력
if buffer_tokens:
decoded = sp.decode(buffer_tokens)
for token in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(token, "")
yield decoded.strip()
break
if final_token in [start_id, pad_id] or sp.id_to_piece(final_token) == "<sep>":
continue
generated.append(int(final_token))
buffer_tokens.append(final_token)
if len(buffer_tokens) >= buffer_size or sp.id_to_piece(final_token).endswith("▁"):
# 띄어쓰기 있는 토큰 나오거나 버퍼 꽉 찼으면 출력
decoded = sp.decode(buffer_tokens)
for token in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(token, "")
yield decoded.strip()
buffer_tokens = []
@app.get("/generate")
async def generate(request: Request):
prompt = request.query_params.get("prompt", "안녕하세요")
return StreamingResponse(generate_text_mirostat_top_p_with_buffer(prompt), media_type="text/plain") |