File size: 10,296 Bytes
35d657e
 
 
 
 
 
 
 
 
 
 
9cad8b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d657e
 
34f893b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d657e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cad8b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import requests
import numpy as np
import tensorflow as tf
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import nltk
nltk.download('punkt')
from nltk.tokenize import 
    
app = FastAPI()    
      
sp = spm.SentencePieceProcessor()      
sp.load("kolig_unigram.model")      
      
pad_id = sp.piece_to_id("<pad>")      
if pad_id == -1: pad_id = 0      
start_id = sp.piece_to_id("<start>")      
if start_id == -1: start_id = 1      
end_id = sp.piece_to_id("< end >")      
if end_id == -1: end_id = 2      
unk_id = sp.piece_to_id("<unk>")      
if unk_id == -1: unk_id = 3      
      
vocab_size = sp.get_piece_size()      
max_len = 100      
      
def text_to_ids(text):      
    return sp.encode(text, out_type=int)      
      
def ids_to_text(ids):      
    return sp.decode(ids)      
    
class RotaryPositionalEmbedding(layers.Layer):      
    def __init__(self, dim):      
        super().__init__()      
        inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))      
        self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)      
      
    def call(self, x):      
        batch, heads, seq_len, depth = tf.unstack(tf.shape(x))      
        t = tf.range(seq_len, dtype=tf.float32)      
        freqs = tf.einsum('i,j->ij', t, self.inv_freq)      
        emb_sin = tf.sin(freqs)      
        emb_cos = tf.cos(freqs)      
        emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])      
        emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])      
        x1 = x[..., ::2]      
        x2 = x[..., 1::2]      
        x_rotated = tf.stack([      
            x1 * emb_cos - x2 * emb_sin,      
            x1 * emb_sin + x2 * emb_cos      
        ], axis=-1)      
        x_rotated = tf.reshape(x_rotated, tf.shape(x))      
        return x_rotated    
    
class SwiGLU(tf.keras.layers.Layer):    
    def __init__(self, d_model, d_ff):    
        super().__init__()    
        self.proj = tf.keras.layers.Dense(d_ff * 2)    
        self.out = tf.keras.layers.Dense(d_model)    
    
    def call(self, x):    
        x_proj = self.proj(x)    
        x_val, x_gate = tf.split(x_proj, 2, axis=-1)    
        return self.out(x_val * tf.nn.silu(x_gate))    
            
class GPTBlock(tf.keras.layers.Layer):    
    def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):      
        super().__init__()      
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)      
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate)     
        self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')     
        self.adapter_up = tf.keras.layers.Dense(d_model)      
      
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
        self.ffn = SwiGLU(d_model, d_ff)      
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate)     
        self.rope = RotaryPositionalEmbedding(d_model // num_heads)      
      
    def call(self, x, training=False):      
        x_norm = self.ln1(x)      
        b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]      
        h = self.mha.num_heads      
        d = x_norm.shape[-1] // h      
      
        qkv = tf.reshape(x_norm, [b, s, h, d])      
        qkv = tf.transpose(qkv, [0, 2, 1, 3])      
        q = self.rope(qkv)      
        k = self.rope(qkv)      
        q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])      
        k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])      
      
        attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)      
        attn_out = self.dropout1(attn_out, training=training)      
    
        adapter_out = self.adapter_up(self.adapter_down(attn_out))    
        attn_out = attn_out + adapter_out      
      
        x = x + attn_out      
        ffn_out = self.ffn(self.ln2(x))      
        x = x + self.dropout2(ffn_out, training=training)      
        return x    
    
class InteractGPT(tf.keras.Model):      
    def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):      
        super().__init__()      
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)      
        self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]      
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
      
    def call(self, x, training=False):      
        x = self.token_embedding(x)      
        for block in self.blocks:      
            x = block(x, training=training)      
        x = self.ln_f(x)      
        logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)      
        return logits      
    
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)        
      
dummy_input = tf.zeros((1, max_len), dtype=tf.int32)  # 배치1, 시퀀스길이 max_len      
_ = model(dummy_input)  # 모델이 빌드됨      
model.load_weights("InteractGPT.weights.h5")      
print("모델 가중치 로드 완료!")      


def generate_text_mirostat_top_p(model, prompt, max_len=100, max_gen=98,      
                                 temperature=1.0, min_len=20,      
                                 repetition_penalty=1.2, eta=0.1, m=100, p=0.9):      
    model_input = text_to_ids(f"<start> {prompt} <sep>")      
    model_input = model_input[:max_len]      
    generated = list(model_input)      
      
    tau = 5.0  # 초기 목표 surprise      
      
    for step in range(max_gen):      
        pad_length = max(0, max_len - len(generated))      
        input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)      
        input_tensor = tf.convert_to_tensor([input_padded])      
        logits = model(input_tensor, training=False)      
        next_token_logits = logits[0, len(generated) - 1].numpy()      
      
        # 반복 페널티 적용      
        token_counts = {}      
        for t in generated:      
            token_counts[t] = token_counts.get(t, 0) + 1      
        for token_id, count in token_counts.items():      
            next_token_logits[token_id] /= (repetition_penalty ** count)      
      
        # 최소 길이 넘으면 종료 토큰 확률 낮추기      
        if len(generated) >= min_len:      
            next_token_logits[end_id] -= 5.0      
        next_token_logits[pad_id] -= 10.0      
      
        # 온도 조절      
        next_token_logits = next_token_logits / temperature      
      
        # --- 미로스타트 + Top-p 샘플링 ---      
        logits_stable = next_token_logits - np.max(next_token_logits)      
        probs = np.exp(logits_stable)      
        probs /= probs.sum()      
      
        # 1. mirostat top-m 후보 추리기      
        sorted_indices = np.argsort(-probs)      
        top_indices = sorted_indices[:m]      
        top_probs = probs[top_indices]      
        top_probs /= top_probs.sum()      
      
        # 2. mirostat 샘플링      
        sampled_index = np.random.choice(top_indices, p=top_probs)      
        sampled_prob = probs[sampled_index]      
        observed_surprise = -np.log(sampled_prob + 1e-9)      
        tau += eta * (observed_surprise - tau)      
      
        # 3. top-p 필터링      
        sorted_top_indices = top_indices[np.argsort(-top_probs)]      
        sorted_top_probs = np.sort(top_probs)[::-1]      
        cumulative_probs = np.cumsum(sorted_top_probs)      
        cutoff = np.searchsorted(cumulative_probs, p, side='left') + 1      
        filtered_indices = sorted_top_indices[:cutoff]      
        filtered_probs = sorted_top_probs[:cutoff]      
        filtered_probs /= filtered_probs.sum()      
      
        # 4. 최종 토큰 샘플링      
        final_token = np.random.choice(filtered_indices, p=filtered_probs)      
        generated.append(int(final_token))      
      
        decoded_text = sp.decode(generated)      
        # 특수 토큰 제거      
        for token in ["<start>", "<sep>", "<end>"]:      
            decoded_text = decoded_text.replace(token, "")      
      
        decoded_text = decoded_text.strip()      
      
        if len(generated) >= min_len and (final_token == end_id or decoded_text.endswith(('.', '!', '?'))):      
            yield decoded_text      
            break      
              
async def async_generator_wrapper(prompt: str):      
    # 동기 제너레이터를 비동기로 감싸기      
    loop = asyncio.get_event_loop()      
    gen = generate_text_mirostat_top_p(model, prompt)      
          
    for text_piece in gen:      
        yield text_piece      
        # 토큰 생성 속도 조절 (0.1초 딜레이)      
        await asyncio.sleep(0.1)      
      
@app.get("/generate")      
async def generate(request: Request):      
    # 쿼리 파라미터로 prompt 받음, 없으면 기본값      
    prompt = request.query_params.get("prompt", "안녕하세요")      
          
    # 스트리밍 응답으로 보냄      
    return StreamingResponse(async_generator_wrapper(prompt), media_type="text/plain") 여기에 합쳐

async def async_generator_wrapper(prompt: str):
    intent = simple_intent_classifier(prompt)

    if intent == "정보질문":
        wiki_summary = get_wikipedia_summary(prompt)
        summarized = summarize_text(wiki_summary, top_n=3)
        yield f"『 \"{prompt}\" 에 대한 위키백과 요약입니다. 』\n\n{summarized}\n\n"

    # 이후 일반 생성으로 이어감 (스트리밍)
    gen = generate_text_mirostat_top_p(model, prompt)
    for text_piece in gen:
        yield text_piece
        await asyncio.sleep(0.1)

@app.get("/generate")
async def generate(request: Request):
    prompt = request.query_params.get("prompt", "안녕하세요")
    return StreamingResponse(async_generator_wrapper(prompt), media_type="text/plain")