import requests import numpy as np import tensorflow as tf from tensorflow.keras import layers import asyncio from fastapi import FastAPI, Request from fastapi.responses import StreamingResponse, PlainTextResponse import sentencepiece as spm import re import math from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from fastapi.middleware.cors import CORSMiddleware app = FastAPI() origins = [ "https://insect5386.github.io", "https://insect5386.github.io/insect5386" ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) sp = spm.SentencePieceProcessor() sp.load("kolig_unigram.model") pad_id = sp.piece_to_id("") if pad_id == -1: pad_id = 0 start_id = sp.piece_to_id("") if start_id == -1: start_id = 1 end_id = sp.piece_to_id("") if end_id == -1: end_id = 2 unk_id = sp.piece_to_id("") if unk_id == -1: unk_id = 3 vocab_size = sp.get_piece_size() max_len = 100 def text_to_ids(text): return sp.encode(text, out_type=int) def ids_to_text(ids): return sp.decode(ids) class RotaryPositionalEmbedding(layers.Layer): def __init__(self, dim): super().__init__() inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) self.inv_freq = tf.constant(inv_freq, dtype=tf.float32) def call(self, x): batch, heads, seq_len, depth = tf.unstack(tf.shape(x)) t = tf.range(seq_len, dtype=tf.float32) freqs = tf.einsum('i,j->ij', t, self.inv_freq) emb_sin = tf.sin(freqs) emb_cos = tf.cos(freqs) emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1]) emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1]) x1 = x[..., ::2] x2 = x[..., 1::2] x_rotated = tf.stack([ x1 * emb_cos - x2 * emb_sin, x1 * emb_sin + x2 * emb_cos ], axis=-1) x_rotated = tf.reshape(x_rotated, tf.shape(x)) return x_rotated class SwiGLU(tf.keras.layers.Layer): def __init__(self, d_model, d_ff): super().__init__() self.proj = tf.keras.layers.Dense(d_ff * 2) self.out = tf.keras.layers.Dense(d_model) def call(self, x): x_proj = self.proj(x) x_val, x_gate = tf.split(x_proj, 2, axis=-1) return self.out(x_val * tf.nn.silu(x_gate)) class Block(tf.keras.layers.Layer): def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.05, adapter_dim=64): super().__init__() self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5) self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads) self.dropout1 = tf.keras.layers.Dropout(dropout_rate) self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu') self.adapter_up = tf.keras.layers.Dense(d_model) self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5) self.ffn = SwiGLU(d_model, d_ff) self.dropout2 = tf.keras.layers.Dropout(dropout_rate) self.rope = RotaryPositionalEmbedding(d_model // num_heads) def call(self, x, training=False): x_norm = self.ln1(x) b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2] h = self.mha.num_heads d = x_norm.shape[-1] // h qkv = tf.reshape(x_norm, [b, s, h, d]) qkv = tf.transpose(qkv, [0, 2, 1, 3]) q = self.rope(qkv) k = self.rope(qkv) q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d]) k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d]) attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training) attn_out = self.dropout1(attn_out, training=training) adapter_out = self.adapter_up(self.adapter_down(attn_out)) attn_out = attn_out + adapter_out x = x + attn_out ffn_out = self.ffn(self.ln2(x)) x = x + self.dropout2(ffn_out, training=training) return x class Flexi(tf.keras.Model): def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.05): super().__init__() self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model) self.blocks = [Block(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)] self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5) def call(self, x, training=False): x = self.token_embedding(x) for block in self.blocks: x = block(x, training=training) x = self.ln_f(x) logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True) return logits model = Flexi( vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=16 ) dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # 배치1, 시퀀스길이 max_len _ = model(dummy_input) # 모델이 빌드됨 model.load_weights("Flexi.weights.h5") print("모델 가중치 로드 완료!") def is_greedy_response_acceptable(text): text = text.strip() # 너무 짧은 문장 거르기 if len(text) < 5: return False # 단어 수 너무 적은 것도 거름 if len(text.split()) < 3: return False # ㅋㅋㅋ 같은 자모 연속만 있으면 거름 (단, 'ㅋㅋ' 포함되면 허용) if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', text) and 'ㅋㅋ' not in text: return False # 문장 끝이 어색한 경우 (다/요/죠 등 일반적 형태로 끝나지 않으면 거름) if not re.search(r'(다|요|죠|다\.|요\.|죠\.|다!|요!|죠!|\!|\?|\.)$', text): return False return True def generate_text_sample(model, prompt, max_len=100, max_gen=98, temperature=0.8, top_k=55, top_p=0.95, min_len=12): model_input = text_to_ids(f" {prompt} ") model_input = model_input[:max_len] generated = list(model_input) for _ in range(max_gen): pad_len = max(0, max_len - len(generated)) input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id) input_tensor = tf.convert_to_tensor([input_padded]) logits = model(input_tensor, training=False) next_logits = logits[0, len(generated) - 1].numpy() # Temperature 적용 next_logits = next_logits / temperature probs = np.exp(next_logits - np.max(next_logits)) probs = probs / probs.sum() # Top-K 필터링 if top_k is not None and top_k > 0: indices_to_remove = probs < np.sort(probs)[-top_k] probs[indices_to_remove] = 0 probs /= probs.sum() # Top-P (누적 확률) 필터링 if top_p is not None and 0 < top_p < 1: sorted_indices = np.argsort(probs)[::-1] sorted_probs = probs[sorted_indices] cumulative_probs = np.cumsum(sorted_probs) # 누적 확률이 top_p 초과하는 토큰들은 제거 cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right') probs_to_keep = sorted_indices[:cutoff_index+1] mask = np.ones_like(probs, dtype=bool) mask[probs_to_keep] = False probs[mask] = 0 probs /= probs.sum() # 샘플링 next_token = np.random.choice(len(probs), p=probs) generated.append(int(next_token)) # 디코딩 및 후처리 decoded = sp.decode(generated) for t in ["", "", ""]: decoded = decoded.replace(t, "") decoded = decoded.strip() if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('요', '다', '.', '!', '?'))): if is_greedy_response_acceptable(decoded): return decoded else: continue decoded = sp.decode(generated) for t in ["", "", ""]: decoded = decoded.replace(t, "") return decoded.strip() from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.metrics.pairwise import cosine_similarity class SimilarityMemory: def __init__(self, n_components=100): self.memory_texts = [] self.vectorizer = TfidfVectorizer() self.svd = TruncatedSVD(n_components=n_components) self.embeddings = None self.fitted = False def add(self, text: str): self.memory_texts.append(text) self._update_embeddings() def _update_embeddings(self): if len(self.memory_texts) == 0: self.embeddings = None self.fitted = False return X = self.vectorizer.fit_transform(self.memory_texts) n_comp = min(self.svd.n_components, X.shape[1], len(self.memory_texts)-1) if n_comp <= 0: self.embeddings = X.toarray() self.fitted = True return self.svd = TruncatedSVD(n_components=n_comp) self.embeddings = self.svd.fit_transform(X) self.fitted = True def retrieve(self, query: str, top_k=3): if not self.fitted or self.embeddings is None or len(self.memory_texts) == 0: return [] Xq = self.vectorizer.transform([query]) if self.svd.n_components > Xq.shape[1] or self.svd.n_components > len(self.memory_texts) - 1: q_emb = Xq.toarray() else: q_emb = self.svd.transform(Xq) sims = cosine_similarity(q_emb, self.embeddings)[0] top_indices = sims.argsort()[::-1][:top_k] return [self.memory_texts[i] for i in top_indices] def process_input(self, new_text: str, top_k=3): """자동으로 기억 저장하고, 유사한 기억 찾아서 합친 프롬프트 생성""" related_memories = self.retrieve(new_text, top_k=top_k) self.add(new_text) return self.merge_prompt(new_text, related_memories) def merge_prompt(self, prompt: str, memories: list): context = "\n".join(memories) return f"{context}\n\n{prompt}" if context else prompt def mismatch_tone(input_text, output_text): if "ㅋㅋ" in input_text and not re.search(r'ㅋㅋ|ㅎ|재밌|놀|만나|맛집|여행', output_text): return True return False # 유효한 응답인지 검사 def is_valid_response(response): if len(response.strip()) < 2: return False if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', response): return False if len(response.split()) < 2: return False if response.count(' ') < 2: return False if any(tok in response.lower() for tok in ['hello', 'this', 'ㅋㅋ']): return False return True # 위키 요약 관련 def extract_main_query(text): sentences = re.split(r'[.?!]\s*', text) sentences = [s.strip() for s in sentences if s.strip()] if not sentences: return text last = sentences[-1] last = re.sub(r'[^가-힣a-zA-Z0-9 ]', '', last) particles = ['이', '가', '은', '는', '을', '를', '의', '에서', '에게', '한테', '보다'] for p in particles: last = re.sub(rf'\b(\w+){p}\b', r'\1', last) return last.strip() def get_wikipedia_summary(query): cleaned_query = extract_main_query(query) url = f"https://ko.wikipedia.org/api/rest_v1/page/summary/{cleaned_query}" res = requests.get(url) if res.status_code == 200: return res.json().get("extract", "요약 정보를 찾을 수 없습니다.") else: return "위키백과에서 정보를 가져올 수 없습니다." def textrank_summarize(text, top_n=3): sentences = re.split(r'(?<=[.!?])\s+', text.strip()) sentences = [s.strip() for s in sentences if len(s.strip()) > 10] if len(sentences) <= top_n: return text vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(sentences) sim_matrix = cosine_similarity(tfidf_matrix) np.fill_diagonal(sim_matrix, 0) def pagerank(matrix, damping=0.85, max_iter=100, tol=1e-4): N = matrix.shape[0] ranks = np.ones(N) / N row_sums = np.sum(matrix, axis=1) row_sums[row_sums == 0] = 1 for _ in range(max_iter): prev_ranks = ranks.copy() for i in range(N): incoming = matrix[:, i] ranks[i] = (1 - damping) / N + damping * np.sum(incoming * prev_ranks / row_sums) if np.linalg.norm(ranks - prev_ranks) < tol: break return ranks scores = pagerank(sim_matrix) ranked_idx = np.argsort(scores)[::-1] selected_idx = sorted(ranked_idx[:top_n]) summary = ' '.join([sentences[i] for i in selected_idx]) return summary def summarize_from_wikipedia(query, top_n=3): raw_summary = get_wikipedia_summary(query) first_summary = textrank_summarize(raw_summary, top_n=top_n) second_summary = textrank_summarize(first_summary, top_n=top_n) return second_summary def simple_intent_classifier(text): text = text.lower() greet_keywords = ["안녕", "반가워", "이름", "누구", "소개", "어디서 왔", "정체", "몇 살", "너 뭐야"] info_keywords = ["설명", "정보", "무엇", "뭐야", "어디", "누구", "왜", "어떻게", "종류", "개념"] if any(kw in text for kw in greet_keywords): return "인사" elif any(kw in text for kw in info_keywords): return "정보질문" else: return "일상대화" def respond(input_text): # 1) 사용자 입력 기억에 저장 (원하면) memory.process_input(input_text) intent = simple_intent_classifier(input_text) if "이름" in input_text: response = "제 이름은 Flexi입니다." memory.process_input(response) # 답변도 기억에 추가 가능 return response if "누구" in input_text: response = "저는 Flexi라고 해요." memory.process_input(response) return response if intent == "정보질문": keyword = re.sub(r"(에 대해|에 대한|에 대해서)?\s*(설명해줘|알려줘|뭐야|개념|정의|정보)?", "", input_text).strip() if not keyword: response = "어떤 주제에 대해 궁금한가요?" memory.add(response) return response summary = summarize_from_wikipedia(keyword) response = f"{summary}\n다른 궁금한 점 있으신가요?" return response # 기억에서 유사 문장 꺼내서 프롬프트 만들기 related_memories = memory.retrieve(input_text, top_k=3) merged_prompt = merge_prompt_with_memory(input_text, related_memories) # 모델로 응답 생성 response = generate_text_sample(model, merged_prompt) # 응답 검증, 안 맞으면 재생성 if not is_valid_response(response) or mismatch_tone(input_text, response): response = generate_text_sample(model, merged_prompt) # 최종 응답도 기억에 추가 memory.add(response) return response @app.get("/generate", response_class=PlainTextResponse) async def generate(request: Request): prompt = request.query_params.get("prompt", "안녕하세요") response_text = respond(prompt) return response_text