Spaces:
Running
Running
import requests | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
import asyncio | |
from fastapi import FastAPI, Request | |
from fastapi.responses import StreamingResponse, PlainTextResponse | |
import sentencepiece as spm | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from fastapi.middleware.cors import CORSMiddleware | |
import re | |
app = FastAPI() | |
origins = [ | |
"https://insect5386.github.io", | |
"https://insect5386.github.io/insect5386" | |
] | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
sp = spm.SentencePieceProcessor() | |
sp.load("kolig_unigram.model") | |
pad_id = sp.piece_to_id("<pad>") | |
if pad_id == -1: pad_id = 0 | |
start_id = sp.piece_to_id("<start>") | |
if start_id == -1: start_id = 1 | |
end_id = sp.piece_to_id("<end>") | |
if end_id == -1: end_id = 2 | |
unk_id = sp.piece_to_id("<unk>") | |
if unk_id == -1: unk_id = 3 | |
vocab_size = sp.get_piece_size() | |
max_len = 100 | |
def text_to_ids(text): | |
return sp.encode(text, out_type=int) | |
def ids_to_text(ids): | |
return sp.decode(ids) | |
class RotaryPositionalEmbedding(layers.Layer): | |
def __init__(self, dim): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) | |
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32) | |
def call(self, x): | |
batch, heads, seq_len, depth = tf.unstack(tf.shape(x)) | |
t = tf.range(seq_len, dtype=tf.float32) | |
freqs = tf.einsum('i,j->ij', t, self.inv_freq) | |
emb_sin = tf.sin(freqs) | |
emb_cos = tf.cos(freqs) | |
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1]) | |
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1]) | |
x1 = x[..., ::2] | |
x2 = x[..., 1::2] | |
x_rotated = tf.stack([ | |
x1 * emb_cos - x2 * emb_sin, | |
x1 * emb_sin + x2 * emb_cos | |
], axis=-1) | |
x_rotated = tf.reshape(x_rotated, tf.shape(x)) | |
return x_rotated | |
class SwiGLU(tf.keras.layers.Layer): | |
def __init__(self, d_model, d_ff): | |
super().__init__() | |
self.proj = tf.keras.layers.Dense(d_ff * 2) | |
self.out = tf.keras.layers.Dense(d_model) | |
def call(self, x): | |
x_proj = self.proj(x) | |
x_val, x_gate = tf.split(x_proj, 2, axis=-1) | |
return self.out(x_val * tf.nn.silu(x_gate)) | |
class Block(tf.keras.layers.Layer): | |
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.05, adapter_dim=64): | |
super().__init__() | |
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5) | |
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads) | |
self.dropout1 = tf.keras.layers.Dropout(dropout_rate) | |
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu') | |
self.adapter_up = tf.keras.layers.Dense(d_model) | |
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5) | |
self.ffn = SwiGLU(d_model, d_ff) | |
self.dropout2 = tf.keras.layers.Dropout(dropout_rate) | |
self.rope = RotaryPositionalEmbedding(d_model // num_heads) | |
def call(self, x, training=False): | |
x_norm = self.ln1(x) | |
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2] | |
h = self.mha.num_heads | |
d = x_norm.shape[-1] // h | |
qkv = tf.reshape(x_norm, [b, s, h, d]) | |
qkv = tf.transpose(qkv, [0, 2, 1, 3]) | |
q = self.rope(qkv) | |
k = self.rope(qkv) | |
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d]) | |
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d]) | |
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training) | |
attn_out = self.dropout1(attn_out, training=training) | |
adapter_out = self.adapter_up(self.adapter_down(attn_out)) | |
attn_out = attn_out + adapter_out | |
x = x + attn_out | |
ffn_out = self.ffn(self.ln2(x)) | |
x = x + self.dropout2(ffn_out, training=training) | |
return x | |
class Flexi(tf.keras.Model): | |
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.05): | |
super().__init__() | |
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model) | |
self.blocks = [Block(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)] | |
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5) | |
def call(self, x, training=False): | |
x = self.token_embedding(x) | |
for block in self.blocks: | |
x = block(x, training=training) | |
x = self.ln_f(x) | |
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True) | |
return logits | |
model = Flexi( | |
vocab_size=vocab_size, | |
seq_len=max_len, | |
d_model=256, | |
d_ff=1024, | |
n_layers=16 | |
) | |
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # ๋ฐฐ์น1, ์ํ์ค๊ธธ์ด max_len | |
_ = model(dummy_input) # ๋ชจ๋ธ์ด ๋น๋๋จ | |
model.load_weights("Flexi.weights.h5") | |
print("๋ชจ๋ธ ๊ฐ์ค์น ๋ก๋ ์๋ฃ!") | |
def generate_text_sample(model, prompt, max_len=100, max_gen=98, | |
temperature=0.85, top_k=65, top_p=0.9, min_len=12): | |
model_input = text_to_ids(f"{prompt}") | |
model_input = model_input[:max_len] | |
generated = list(model_input) | |
for _ in range(max_gen): | |
pad_len = max(0, max_len - len(generated)) | |
input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id) | |
input_tensor = tf.convert_to_tensor([input_padded]) | |
logits = model(input_tensor, training=False) | |
next_logits = logits[0, len(generated) - 1].numpy() | |
# Temperature ์ ์ฉ | |
next_logits = next_logits / temperature | |
probs = np.exp(next_logits - np.max(next_logits)) | |
probs = probs / probs.sum() | |
# Top-K ํํฐ๋ง | |
if top_k is not None and top_k > 0: | |
indices_to_remove = probs < np.sort(probs)[-top_k] | |
probs[indices_to_remove] = 0 | |
probs /= probs.sum() | |
# Top-P (๋์ ํ๋ฅ ) ํํฐ๋ง | |
if top_p is not None and 0 < top_p < 1: | |
sorted_indices = np.argsort(probs)[::-1] | |
sorted_probs = probs[sorted_indices] | |
cumulative_probs = np.cumsum(sorted_probs) | |
cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right') | |
probs_to_keep = sorted_indices[:cutoff_index+1] | |
mask = np.ones_like(probs, dtype=bool) | |
mask[probs_to_keep] = False | |
probs[mask] = 0 | |
probs /= probs.sum() | |
# ์ํ๋ง | |
next_token = np.random.choice(len(probs), p=probs) | |
generated.append(int(next_token)) | |
# ๋์ฝ๋ฉ ๋ฐ ํ์ฒ๋ฆฌ | |
decoded = sp.decode(generated) | |
for t in ["<start>", "<sep>", "<end>"]: | |
decoded = decoded.replace(t, "") | |
decoded = decoded.strip() | |
if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('์', '๋ค', '.', '!', '?'))): | |
return decoded | |
decoded = sp.decode(generated) | |
for t in ["<start>", "<sep>", "<end>"]: | |
decoded = decoded.replace(t, "") | |
return decoded.strip() | |
# ์ ํจํ ์๋ต์ธ์ง ๊ฒ์ฌ | |
def is_valid_response(response): | |
if len(response.strip()) < 2: | |
return False | |
if re.search(r'[ใฑ-ใ ใ -ใ ฃ]{3,}', response): | |
return False | |
if len(response.split()) < 2: | |
return False | |
if response.count(' ') < 2: | |
return False | |
# 'ใ ใ ' ์ฒดํฌ ์ ๊ฑฐ | |
if any(tok in response.lower() for tok in ['hello', 'this']): | |
return False | |
return True | |
def respond(input_text): | |
# ์ด๋ฆ ๊ด๋ จ ์ง๋ฌธ์ ๋ฑ ๋ฐ์ํ๋ ๋ถ๋ถ ์ ์ง | |
if "์ด๋ฆ" in input_text: | |
response = "์ ์ด๋ฆ์ Flexi์ ๋๋ค." | |
return response | |
if "๋๊ตฌ" in input_text: | |
response = "์ ๋ Flexi๋ผ๊ณ ํด์." | |
return response | |
# mismatch_tone ๊ฒ์ฌ ์ ๊ฑฐ | |
full_prompt = f"<start> {input_text} <sep>" | |
for _ in range(3): # ์ต๋ 3๋ฒ ์ฌ์๋ | |
full_response = generate_text_sample(model, full_prompt) | |
if "์๋ต:" in full_response: | |
response = full_response.split("<sep>")[-1].strip() | |
else: | |
response = full_response.strip() | |
if is_valid_response(response): # mismatch_tone ์ ๊ฑฐ | |
return response | |
return "์ฃ์กํด์, ์ ๋๋ก ๋ต๋ณ์ ๋ชปํ์ด์." | |
async def generate(request: Request): | |
prompt = request.query_params.get("prompt", "์๋ ํ์ธ์") | |
response_text = respond(prompt) | |
return response_text |