Flexi-API / hist.txt
Yuchan5386's picture
Create hist.txt
5ed8573 verified
raw
history blame
2.27 kB
# μœ„ν‚€ μš”μ•½ κ΄€λ ¨
def extract_main_query(text):
sentences = re.split(r'[.?!]\s*', text)
sentences = [s.strip() for s in sentences if s.strip()]
if not sentences:
return text
last = sentences[-1]
last = re.sub(r'[^κ°€-힣a-zA-Z0-9 ]', '', last)
particles = ['이', 'κ°€', '은', 'λŠ”', '을', 'λ₯Ό', '의', 'μ—μ„œ', 'μ—κ²Œ', 'ν•œν…Œ', '보닀']
for p in particles:
last = re.sub(rf'\b(\w+){p}\b', r'\1', last)
return last.strip()
def get_wikipedia_summary(query):
cleaned_query = extract_main_query(query)
url = f"https://ko.wikipedia.org/api/rest_v1/page/summary/{cleaned_query}"
res = requests.get(url)
if res.status_code == 200:
return res.json().get("extract", "μš”μ•½ 정보λ₯Ό 찾을 수 μ—†μŠ΅λ‹ˆλ‹€.")
else:
return "μœ„ν‚€λ°±κ³Όμ—μ„œ 정보λ₯Ό κ°€μ Έμ˜¬ 수 μ—†μŠ΅λ‹ˆλ‹€."
def textrank_summarize(text, top_n=3):
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
sentences = [s.strip() for s in sentences if len(s.strip()) > 10]
if len(sentences) <= top_n:
return text
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(sentences)
sim_matrix = cosine_similarity(tfidf_matrix)
np.fill_diagonal(sim_matrix, 0)
def pagerank(matrix, damping=0.85, max_iter=100, tol=1e-4):
N = matrix.shape[0]
ranks = np.ones(N) / N
row_sums = np.sum(matrix, axis=1)
row_sums[row_sums == 0] = 1
for _ in range(max_iter):
prev_ranks = ranks.copy()
for i in range(N):
incoming = matrix[:, i]
ranks[i] = (1 - damping) / N + damping * np.sum(incoming * prev_ranks / row_sums)
if np.linalg.norm(ranks - prev_ranks) < tol:
break
return ranks
scores = pagerank(sim_matrix)
ranked_idx = np.argsort(scores)[::-1]
selected_idx = sorted(ranked_idx[:top_n])
summary = ' '.join([sentences[i] for i in selected_idx])
return summary
def summarize_from_wikipedia(query, top_n=3):
raw_summary = get_wikipedia_summary(query)
first_summary = textrank_summarize(raw_summary, top_n=top_n)
second_summary = textrank_summarize(first_summary, top_n=top_n)
return second_summary