Flexi-API / api.py
Yuchan5386's picture
Update api.py
d3506eb verified
raw
history blame
12 kB
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, PlainTextResponse
import sentencepiece as spm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from fastapi.middleware.cors import CORSMiddleware
import re
app = FastAPI()
origins = [
"https://insect5386.github.io",
"https://insect5386.github.io/insect5386"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class Block(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.05, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class Flexi(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.05):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [Block(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = Flexi(
vocab_size=vocab_size,
seq_len=max_len,
d_model=256,
d_ff=1024,
n_layers=16
)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # 배치1, μ‹œν€€μŠ€κΈΈμ΄ max_len
_ = model(dummy_input) # λͺ¨λΈμ΄ λΉŒλ“œλ¨
model.load_weights("Flexi.weights.h5")
print("λͺ¨λΈ κ°€μ€‘μΉ˜ λ‘œλ“œ μ™„λ£Œ!")
def generate_text_sample(model, prompt, max_len=100, max_gen=98,
temperature=0.8, top_k=55, top_p=0.95, min_len=12):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
for _ in range(max_gen):
pad_len = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_logits = logits[0, len(generated) - 1].numpy()
# Temperature 적용
next_logits = next_logits / temperature
probs = np.exp(next_logits - np.max(next_logits))
probs = probs / probs.sum()
# Top-K 필터링
if top_k is not None and top_k > 0:
indices_to_remove = probs < np.sort(probs)[-top_k]
probs[indices_to_remove] = 0
probs /= probs.sum()
# Top-P (λˆ„μ  ν™•λ₯ ) 필터링
if top_p is not None and 0 < top_p < 1:
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right')
probs_to_keep = sorted_indices[:cutoff_index+1]
mask = np.ones_like(probs, dtype=bool)
mask[probs_to_keep] = False
probs[mask] = 0
probs /= probs.sum()
# μƒ˜ν”Œλ§
next_token = np.random.choice(len(probs), p=probs)
generated.append(int(next_token))
# λ””μ½”λ”© 및 ν›„μ²˜λ¦¬
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
decoded = decoded.strip()
if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('μš”', 'λ‹€', '.', '!', '?'))):
return decoded
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
return decoded.strip()
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics.pairwise import cosine_similarity
class SimilarityMemory:
def __init__(self, n_components=100):
self.memory_texts = []
self.vectorizer = TfidfVectorizer()
self.svd = TruncatedSVD(n_components=n_components)
self.embeddings = None
self.fitted = False
def add(self, text: str):
self.memory_texts.append(text)
self._update_embeddings()
def _update_embeddings(self):
if len(self.memory_texts) == 0:
self.embeddings = None
self.fitted = False
return
X = self.vectorizer.fit_transform(self.memory_texts)
n_comp = min(self.svd.n_components, X.shape[1], len(self.memory_texts)-1)
if n_comp <= 0:
self.embeddings = X.toarray()
self.fitted = True
return
self.svd = TruncatedSVD(n_components=n_comp)
self.embeddings = self.svd.fit_transform(X)
self.fitted = True
def retrieve(self, query: str, top_k=3):
if not self.fitted or self.embeddings is None or len(self.memory_texts) == 0:
return []
Xq = self.vectorizer.transform([query])
if self.svd.n_components > Xq.shape[1] or self.svd.n_components > len(self.memory_texts) - 1:
q_emb = Xq.toarray()
else:
q_emb = self.svd.transform(Xq)
sims = cosine_similarity(q_emb, self.embeddings)[0]
top_indices = sims.argsort()[::-1][:top_k]
return [self.memory_texts[i] for i in top_indices]
def process_input(self, new_text: str, top_k=3):
"""μžλ™μœΌλ‘œ κΈ°μ–΅ μ €μž₯ν•˜κ³ , μœ μ‚¬ν•œ κΈ°μ–΅ μ°Ύμ•„μ„œ ν•©μΉœ ν”„λ‘¬ν”„νŠΈ 생성"""
related_memories = self.retrieve(new_text, top_k=top_k)
self.add(new_text)
return self.merge_prompt(new_text, related_memories)
def merge_prompt(self, prompt: str, memories: list):
context = "\n".join(memories)
full_prompt = ""
if context:
full_prompt += f"κΈ°μ–΅:\n{context}\n\n"
full_prompt += f"ν˜„μž¬ 질문:\n{prompt}\n\n응닡:"
return full_prompt
memory = SimilarityMemory()
def mismatch_tone(input_text, output_text):
if "γ…‹γ…‹" in input_text and not re.search(r'γ…‹γ…‹|γ…Ž|재밌|놀|λ§Œλ‚˜|λ§›μ§‘|μ—¬ν–‰', output_text):
return True
return False
# μœ νš¨ν•œ 응닡인지 검사
def is_valid_response(response):
if len(response.strip()) < 2:
return False
if re.search(r'[γ„±-γ…Žγ…-γ…£]{3,}', response):
return False
if len(response.split()) < 2:
return False
if response.count(' ') < 2:
return False
if any(tok in response.lower() for tok in ['hello', 'this', 'γ…‹γ…‹']):
return False
return True
def respond(input_text):
memory.process_input(input_text)
if "이름" in input_text:
response = "제 이름은 Flexiμž…λ‹ˆλ‹€."
memory.process_input(response)
return response
if "λˆ„κ΅¬" in input_text:
response = "μ €λŠ” Flexi라고 ν•΄μš”."
memory.process_input(response)
return response
related_memories = memory.retrieve(input_text, top_k=3)
merged_prompt = memory.merge_prompt(input_text, related_memories)
for _ in range(3): # μ΅œλŒ€ 3번 μž¬μ‹œλ„
full_response = generate_text_sample(model, merged_prompt)
# μ—¬κΈ°μ„œ '응닡:' λ’€μ˜ ν…μŠ€νŠΈλ§Œ 뽑기
if "응닡:" in full_response:
response = full_response.split("응닡:")[-1].strip()
else:
response = full_response.strip()
if is_valid_response(response) and not mismatch_tone(input_text, response):
memory.process_input(response)
return response
# 3번 λͺ¨λ‘ μ‹€νŒ¨ μ‹œ fallback
fallback_response = "μ£„μ†‘ν•΄μš”, μ œλŒ€λ‘œ 닡변을 λͺ»ν–ˆμ–΄μš”."
memory.process_input(fallback_response)
return fallback_response
@app.get("/generate", response_class=PlainTextResponse)
async def generate(request: Request):
prompt = request.query_params.get("prompt", "μ•ˆλ…•ν•˜μ„Έμš”")
response_text = respond(prompt)
return response_text