File size: 9,478 Bytes
77d5918
 
 
 
 
 
 
 
 
 
 
67196c6
77d5918
e89787a
 
77d5918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
959a616
 
 
 
 
 
 
 
77d5918
959a616
 
 
 
77d5918
959a616
 
 
 
 
77d5918
959a616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d5918
 
 
 
 
 
 
85e1019
77d5918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4675638
77d5918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4675638
77d5918
 
 
 
 
919644d
77d5918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bec02a2
77d5918
55632cc
 
77d5918
 
55632cc
 
77d5918
bec02a2
 
55632cc
0b02fb4
bec02a2
d3506eb
 
 
 
 
 
0b02fb4
 
77d5918
bec02a2
55632cc
77d5918
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers  
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, PlainTextResponse
import sentencepiece as spm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from fastapi.middleware.cors import CORSMiddleware
import re

app = FastAPI()

origins = [
    "https://insect5386.github.io",
    "https://insect5386.github.io/insect5386"
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
      
sp = spm.SentencePieceProcessor()      
sp.load("kolig_unigram.model")      
      
pad_id = sp.piece_to_id("<pad>")      
if pad_id == -1: pad_id = 0      
start_id = sp.piece_to_id("<start>")      
if start_id == -1: start_id = 1      
end_id = sp.piece_to_id("<end>")      
if end_id == -1: end_id = 2      
unk_id = sp.piece_to_id("<unk>")      
if unk_id == -1: unk_id = 3      
      
vocab_size = sp.get_piece_size()      
max_len = 100      
      
def text_to_ids(text):      
    return sp.encode(text, out_type=int)      
      
def ids_to_text(ids):      
    return sp.decode(ids)      
    
class RotaryPositionalEmbedding(layers.Layer):      
    def __init__(self, dim):      
        super().__init__()      
        inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))      
        self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)      
      
    def call(self, x):      
        batch, heads, seq_len, depth = tf.unstack(tf.shape(x))      
        t = tf.range(seq_len, dtype=tf.float32)      
        freqs = tf.einsum('i,j->ij', t, self.inv_freq)      
        emb_sin = tf.sin(freqs)      
        emb_cos = tf.cos(freqs)      
        emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])      
        emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])      
        x1 = x[..., ::2]      
        x2 = x[..., 1::2]      
        x_rotated = tf.stack([      
            x1 * emb_cos - x2 * emb_sin,      
            x1 * emb_sin + x2 * emb_cos      
        ], axis=-1)      
        x_rotated = tf.reshape(x_rotated, tf.shape(x))      
        return x_rotated    
    
class SwiGLU(tf.keras.layers.Layer):    
    def __init__(self, d_model, d_ff):    
        super().__init__()    
        self.proj = tf.keras.layers.Dense(d_ff * 2)    
        self.out = tf.keras.layers.Dense(d_model)    
    
    def call(self, x):    
        x_proj = self.proj(x)    
        x_val, x_gate = tf.split(x_proj, 2, axis=-1)    
        return self.out(x_val * tf.nn.silu(x_gate))    
            
class Block(tf.keras.layers.Layer):  
    def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.05, adapter_dim=64):    
        super().__init__()    
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)    
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)    
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate)   
        self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')   
        self.adapter_up = tf.keras.layers.Dense(d_model)    
    
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)    
        self.ffn = SwiGLU(d_model, d_ff)    
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate)   
        self.rope = RotaryPositionalEmbedding(d_model // num_heads)    
    
    def call(self, x, training=False):    
        x_norm = self.ln1(x)    
        b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]    
        h = self.mha.num_heads    
        d = x_norm.shape[-1] // h    
    
        qkv = tf.reshape(x_norm, [b, s, h, d])    
        qkv = tf.transpose(qkv, [0, 2, 1, 3])    
        q = self.rope(qkv)    
        k = self.rope(qkv)    
        q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])    
        k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])    
    
        attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)    
        attn_out = self.dropout1(attn_out, training=training)    
  
        adapter_out = self.adapter_up(self.adapter_down(attn_out))  
        attn_out = attn_out + adapter_out    
    
        x = x + attn_out    
        ffn_out = self.ffn(self.ln2(x))    
        x = x + self.dropout2(ffn_out, training=training)    
        return x
    
class Flexi(tf.keras.Model):  
    def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.05):  
        super().__init__()  
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)  
        self.blocks = [Block(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]  
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)  
  
    def call(self, x, training=False):  
        x = self.token_embedding(x)  
        for block in self.blocks:  
            x = block(x, training=training)  
        x = self.ln_f(x)  
        logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)  
        return logits     
    
model = Flexi(
    vocab_size=vocab_size,
    seq_len=max_len,
    d_model=256,
    d_ff=1024,       
    n_layers=16
)

dummy_input = tf.zeros((1, max_len), dtype=tf.int32)  # 배치1, μ‹œν€€μŠ€κΈΈμ΄ max_len      
_ = model(dummy_input)  # λͺ¨λΈμ΄ λΉŒλ“œλ¨      
model.load_weights("Flexi.weights.h5")      
print("λͺ¨λΈ κ°€μ€‘μΉ˜ λ‘œλ“œ μ™„λ£Œ!")      


def generate_text_sample(model, prompt, max_len=100, max_gen=98,
                         temperature=0.8, top_k=55, top_p=0.95, min_len=12):
    model_input = text_to_ids(f"<start> {prompt} <sep>")
    model_input = model_input[:max_len]
    generated = list(model_input)

    for _ in range(max_gen):
        pad_len = max(0, max_len - len(generated))
        input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
        input_tensor = tf.convert_to_tensor([input_padded])
        logits = model(input_tensor, training=False)
        next_logits = logits[0, len(generated) - 1].numpy()

        # Temperature 적용
        next_logits = next_logits / temperature
        probs = np.exp(next_logits - np.max(next_logits))
        probs = probs / probs.sum()

        # Top-K 필터링
        if top_k is not None and top_k > 0:
            indices_to_remove = probs < np.sort(probs)[-top_k]
            probs[indices_to_remove] = 0
            probs /= probs.sum()

        # Top-P (λˆ„μ  ν™•λ₯ ) 필터링
        if top_p is not None and 0 < top_p < 1:
            sorted_indices = np.argsort(probs)[::-1]
            sorted_probs = probs[sorted_indices]
            cumulative_probs = np.cumsum(sorted_probs)
            cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right')
            probs_to_keep = sorted_indices[:cutoff_index+1]

            mask = np.ones_like(probs, dtype=bool)
            mask[probs_to_keep] = False
            probs[mask] = 0
            probs /= probs.sum()

        # μƒ˜ν”Œλ§
        next_token = np.random.choice(len(probs), p=probs)
        generated.append(int(next_token))

        # λ””μ½”λ”© 및 ν›„μ²˜λ¦¬
        decoded = sp.decode(generated)
        for t in ["<start>", "<sep>", "<end>"]:
            decoded = decoded.replace(t, "")
        decoded = decoded.strip()

        if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('μš”', 'λ‹€', '.', '!', '?'))):
            return decoded

    decoded = sp.decode(generated)
    for t in ["<start>", "<sep>", "<end>"]:
        decoded = decoded.replace(t, "")
    return decoded.strip()

def mismatch_tone(input_text, output_text):  
    if "γ…‹γ…‹" in input_text and not re.search(r'γ…‹γ…‹|γ…Ž|재밌|놀|λ§Œλ‚˜|λ§›μ§‘|μ—¬ν–‰', output_text):  
        return True  
    return False

# μœ νš¨ν•œ 응닡인지 검사
def is_valid_response(response):
    if len(response.strip()) < 2:
        return False
    if re.search(r'[γ„±-γ…Žγ…-γ…£]{3,}', response):
        return False
    if len(response.split()) < 2:
        return False
    if response.count(' ') < 2:
        return False
    if any(tok in response.lower() for tok in ['hello', 'this', 'γ…‹γ…‹']):
        return False
    return True


def respond(input_text):
    # 이름 κ΄€λ ¨ μ§ˆλ¬Έμ— λ”± λ°˜μ‘ν•˜λŠ” λΆ€λΆ„ μœ μ§€
    if "이름" in input_text:
        response = "제 이름은 Flexiμž…λ‹ˆλ‹€."
        return response

    if "λˆ„κ΅¬" in input_text:
        response = "μ €λŠ” Flexi라고 ν•΄μš”."
        return response

    # λ©”λͺ¨λ¦¬ κ΄€λ ¨ λΆ€λΆ„ μ‹Ή μ œκ±°ν•˜κ³ , λ‹¨μˆœ ν”„λ‘¬ν”„νŠΈ 생성
    full_prompt = f"ν˜„μž¬ 질문:\n{input_text}\n\n응닡:"

    for _ in range(3):  # μ΅œλŒ€ 3번 μž¬μ‹œλ„
        full_response = generate_text_sample(model, full_prompt)

        if "응닡:" in full_response:
            response = full_response.split("응닡:")[-1].strip()
        else:
            response = full_response.strip()

        if is_valid_response(response) and not mismatch_tone(input_text, response):
            return response

    return "μ£„μ†‘ν•΄μš”, μ œλŒ€λ‘œ 닡변을 λͺ»ν–ˆμ–΄μš”."

@app.get("/generate", response_class=PlainTextResponse)
async def generate(request: Request):
    prompt = request.query_params.get("prompt", "μ•ˆλ…•ν•˜μ„Έμš”")
    response_text = respond(prompt)
    return response_text