Spaces:
Sleeping
Sleeping
File size: 9,478 Bytes
77d5918 67196c6 77d5918 e89787a 77d5918 959a616 77d5918 959a616 77d5918 959a616 77d5918 959a616 77d5918 85e1019 77d5918 4675638 77d5918 4675638 77d5918 919644d 77d5918 bec02a2 77d5918 55632cc 77d5918 55632cc 77d5918 bec02a2 55632cc 0b02fb4 bec02a2 d3506eb 0b02fb4 77d5918 bec02a2 55632cc 77d5918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, PlainTextResponse
import sentencepiece as spm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from fastapi.middleware.cors import CORSMiddleware
import re
app = FastAPI()
origins = [
"https://insect5386.github.io",
"https://insect5386.github.io/insect5386"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class Block(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.05, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class Flexi(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.05):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [Block(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = Flexi(
vocab_size=vocab_size,
seq_len=max_len,
d_model=256,
d_ff=1024,
n_layers=16
)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # λ°°μΉ1, μνμ€κΈΈμ΄ max_len
_ = model(dummy_input) # λͺ¨λΈμ΄ λΉλλ¨
model.load_weights("Flexi.weights.h5")
print("λͺ¨λΈ κ°μ€μΉ λ‘λ μλ£!")
def generate_text_sample(model, prompt, max_len=100, max_gen=98,
temperature=0.8, top_k=55, top_p=0.95, min_len=12):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
for _ in range(max_gen):
pad_len = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_logits = logits[0, len(generated) - 1].numpy()
# Temperature μ μ©
next_logits = next_logits / temperature
probs = np.exp(next_logits - np.max(next_logits))
probs = probs / probs.sum()
# Top-K νν°λ§
if top_k is not None and top_k > 0:
indices_to_remove = probs < np.sort(probs)[-top_k]
probs[indices_to_remove] = 0
probs /= probs.sum()
# Top-P (λμ νλ₯ ) νν°λ§
if top_p is not None and 0 < top_p < 1:
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right')
probs_to_keep = sorted_indices[:cutoff_index+1]
mask = np.ones_like(probs, dtype=bool)
mask[probs_to_keep] = False
probs[mask] = 0
probs /= probs.sum()
# μνλ§
next_token = np.random.choice(len(probs), p=probs)
generated.append(int(next_token))
# λμ½λ© λ° νμ²λ¦¬
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
decoded = decoded.strip()
if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('μ', 'λ€', '.', '!', '?'))):
return decoded
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
return decoded.strip()
def mismatch_tone(input_text, output_text):
if "γ
γ
" in input_text and not re.search(r'γ
γ
|γ
|μ¬λ°|λ|λ§λ|λ§μ§|μ¬ν', output_text):
return True
return False
# μ ν¨ν μλ΅μΈμ§ κ²μ¬
def is_valid_response(response):
if len(response.strip()) < 2:
return False
if re.search(r'[γ±-γ
γ
-γ
£]{3,}', response):
return False
if len(response.split()) < 2:
return False
if response.count(' ') < 2:
return False
if any(tok in response.lower() for tok in ['hello', 'this', 'γ
γ
']):
return False
return True
def respond(input_text):
# μ΄λ¦ κ΄λ ¨ μ§λ¬Έμ λ± λ°μνλ λΆλΆ μ μ§
if "μ΄λ¦" in input_text:
response = "μ μ΄λ¦μ Flexiμ
λλ€."
return response
if "λꡬ" in input_text:
response = "μ λ FlexiλΌκ³ ν΄μ."
return response
# λ©λͺ¨λ¦¬ κ΄λ ¨ λΆλΆ μΉ μ κ±°νκ³ , λ¨μ ν둬ννΈ μμ±
full_prompt = f"νμ¬ μ§λ¬Έ:\n{input_text}\n\nμλ΅:"
for _ in range(3): # μ΅λ 3λ² μ¬μλ
full_response = generate_text_sample(model, full_prompt)
if "μλ΅:" in full_response:
response = full_response.split("μλ΅:")[-1].strip()
else:
response = full_response.strip()
if is_valid_response(response) and not mismatch_tone(input_text, response):
return response
return "μ£μ‘ν΄μ, μ λλ‘ λ΅λ³μ λͺ»νμ΄μ."
@app.get("/generate", response_class=PlainTextResponse)
async def generate(request: Request):
prompt = request.query_params.get("prompt", "μλ
νμΈμ")
response_text = respond(prompt)
return response_text |