Spaces:
Sleeping
Sleeping
File size: 15,920 Bytes
77d5918 e89787a 77d5918 959a616 77d5918 959a616 77d5918 959a616 77d5918 959a616 77d5918 85e1019 77d5918 919644d 5226c06 919644d 5226c06 919644d 5226c06 919644d 5226c06 919644d 5226c06 919644d 5226c06 919644d 5226c06 919644d 5226c06 004f427 5226c06 919644d 5226c06 919644d 5226c06 004f427 919644d 77d5918 55632cc 77d5918 55632cc 77d5918 55632cc 77d5918 55632cc 77d5918 55632cc 77d5918 55632cc 919644d 55632cc 919644d 55632cc 77d5918 919644d 55632cc 77d5918 55632cc 77d5918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, PlainTextResponse
import sentencepiece as spm
import re
import math
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
origins = [
"https://insect5386.github.io",
"https://insect5386.github.io/insect5386"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class Block(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.05, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class Flexi(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.05):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [Block(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = Flexi(
vocab_size=vocab_size,
seq_len=max_len,
d_model=256,
d_ff=1024,
n_layers=16
)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # λ°°μΉ1, μνμ€κΈΈμ΄ max_len
_ = model(dummy_input) # λͺ¨λΈμ΄ λΉλλ¨
model.load_weights("Flexi.weights.h5")
print("λͺ¨λΈ κ°μ€μΉ λ‘λ μλ£!")
def is_greedy_response_acceptable(text):
text = text.strip()
# λ무 μ§§μ λ¬Έμ₯ κ±°λ₯΄κΈ°
if len(text) < 5:
return False
# λ¨μ΄ μ λ무 μ μ κ²λ κ±°λ¦
if len(text.split()) < 3:
return False
# γ
γ
γ
κ°μ μλͺ¨ μ°μλ§ μμΌλ©΄ κ±°λ¦ (λ¨, 'γ
γ
' ν¬ν¨λλ©΄ νμ©)
if re.search(r'[γ±-γ
γ
-γ
£]{3,}', text) and 'γ
γ
' not in text:
return False
# λ¬Έμ₯ λμ΄ μ΄μν κ²½μ° (λ€/μ/μ£ λ± μΌλ°μ ννλ‘ λλμ§ μμΌλ©΄ κ±°λ¦)
if not re.search(r'(λ€|μ|μ£ |λ€\.|μ\.|μ£ \.|λ€!|μ!|μ£ !|\!|\?|\.)$', text):
return False
return True
def generate_text_sample(model, prompt, max_len=100, max_gen=98,
temperature=0.8, top_k=55, top_p=0.95, min_len=12):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
for _ in range(max_gen):
pad_len = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_logits = logits[0, len(generated) - 1].numpy()
# Temperature μ μ©
next_logits = next_logits / temperature
probs = np.exp(next_logits - np.max(next_logits))
probs = probs / probs.sum()
# Top-K νν°λ§
if top_k is not None and top_k > 0:
indices_to_remove = probs < np.sort(probs)[-top_k]
probs[indices_to_remove] = 0
probs /= probs.sum()
# Top-P (λμ νλ₯ ) νν°λ§
if top_p is not None and 0 < top_p < 1:
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
# λμ νλ₯ μ΄ top_p μ΄κ³Όνλ ν ν°λ€μ μ κ±°
cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right')
probs_to_keep = sorted_indices[:cutoff_index+1]
mask = np.ones_like(probs, dtype=bool)
mask[probs_to_keep] = False
probs[mask] = 0
probs /= probs.sum()
# μνλ§
next_token = np.random.choice(len(probs), p=probs)
generated.append(int(next_token))
# λμ½λ© λ° νμ²λ¦¬
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
decoded = decoded.strip()
if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('μ', 'λ€', '.', '!', '?'))):
if is_greedy_response_acceptable(decoded):
return decoded
else:
continue
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
return decoded.strip()
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics.pairwise import cosine_similarity
class SimilarityMemory:
def __init__(self, n_components=100):
self.memory_texts = []
self.vectorizer = TfidfVectorizer()
self.svd = TruncatedSVD(n_components=n_components)
self.embeddings = None
self.fitted = False
def add(self, text: str):
self.memory_texts.append(text)
self._update_embeddings()
def _update_embeddings(self):
if len(self.memory_texts) == 0:
self.embeddings = None
self.fitted = False
return
X = self.vectorizer.fit_transform(self.memory_texts)
n_comp = min(self.svd.n_components, X.shape[1], len(self.memory_texts)-1)
if n_comp <= 0:
self.embeddings = X.toarray()
self.fitted = True
return
self.svd = TruncatedSVD(n_components=n_comp)
self.embeddings = self.svd.fit_transform(X)
self.fitted = True
def retrieve(self, query: str, top_k=3):
if not self.fitted or self.embeddings is None or len(self.memory_texts) == 0:
return []
Xq = self.vectorizer.transform([query])
if self.svd.n_components > Xq.shape[1] or self.svd.n_components > len(self.memory_texts) - 1:
q_emb = Xq.toarray()
else:
q_emb = self.svd.transform(Xq)
sims = cosine_similarity(q_emb, self.embeddings)[0]
top_indices = sims.argsort()[::-1][:top_k]
return [self.memory_texts[i] for i in top_indices]
def process_input(self, new_text: str, top_k=3):
"""μλμΌλ‘ κΈ°μ΅ μ μ₯νκ³ , μ μ¬ν κΈ°μ΅ μ°Ύμμ ν©μΉ ν둬ννΈ μμ±"""
related_memories = self.retrieve(new_text, top_k=top_k)
self.add(new_text)
return self.merge_prompt(new_text, related_memories)
def merge_prompt(self, prompt: str, memories: list):
context = "\n".join(memories)
return f"{context}\n\n{prompt}" if context else prompt
def mismatch_tone(input_text, output_text):
if "γ
γ
" in input_text and not re.search(r'γ
γ
|γ
|μ¬λ°|λ|λ§λ|λ§μ§|μ¬ν', output_text):
return True
return False
# μ ν¨ν μλ΅μΈμ§ κ²μ¬
def is_valid_response(response):
if len(response.strip()) < 2:
return False
if re.search(r'[γ±-γ
γ
-γ
£]{3,}', response):
return False
if len(response.split()) < 2:
return False
if response.count(' ') < 2:
return False
if any(tok in response.lower() for tok in ['hello', 'this', 'γ
γ
']):
return False
return True
# μν€ μμ½ κ΄λ ¨
def extract_main_query(text):
sentences = re.split(r'[.?!]\s*', text)
sentences = [s.strip() for s in sentences if s.strip()]
if not sentences:
return text
last = sentences[-1]
last = re.sub(r'[^κ°-ν£a-zA-Z0-9 ]', '', last)
particles = ['μ΄', 'κ°', 'μ', 'λ', 'μ', 'λ₯Ό', 'μ', 'μμ', 'μκ²', 'νν
', '보λ€']
for p in particles:
last = re.sub(rf'\b(\w+){p}\b', r'\1', last)
return last.strip()
def get_wikipedia_summary(query):
cleaned_query = extract_main_query(query)
url = f"https://ko.wikipedia.org/api/rest_v1/page/summary/{cleaned_query}"
res = requests.get(url)
if res.status_code == 200:
return res.json().get("extract", "μμ½ μ 보λ₯Ό μ°Ύμ μ μμ΅λλ€.")
else:
return "μν€λ°±κ³Όμμ μ 보λ₯Ό κ°μ Έμ¬ μ μμ΅λλ€."
def textrank_summarize(text, top_n=3):
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
sentences = [s.strip() for s in sentences if len(s.strip()) > 10]
if len(sentences) <= top_n:
return text
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(sentences)
sim_matrix = cosine_similarity(tfidf_matrix)
np.fill_diagonal(sim_matrix, 0)
def pagerank(matrix, damping=0.85, max_iter=100, tol=1e-4):
N = matrix.shape[0]
ranks = np.ones(N) / N
row_sums = np.sum(matrix, axis=1)
row_sums[row_sums == 0] = 1
for _ in range(max_iter):
prev_ranks = ranks.copy()
for i in range(N):
incoming = matrix[:, i]
ranks[i] = (1 - damping) / N + damping * np.sum(incoming * prev_ranks / row_sums)
if np.linalg.norm(ranks - prev_ranks) < tol:
break
return ranks
scores = pagerank(sim_matrix)
ranked_idx = np.argsort(scores)[::-1]
selected_idx = sorted(ranked_idx[:top_n])
summary = ' '.join([sentences[i] for i in selected_idx])
return summary
def summarize_from_wikipedia(query, top_n=3):
raw_summary = get_wikipedia_summary(query)
first_summary = textrank_summarize(raw_summary, top_n=top_n)
second_summary = textrank_summarize(first_summary, top_n=top_n)
return second_summary
def simple_intent_classifier(text):
text = text.lower()
greet_keywords = ["μλ
", "λ°κ°μ", "μ΄λ¦", "λꡬ", "μκ°", "μ΄λμ μ", "μ 체", "λͺ μ΄", "λ λμΌ"]
info_keywords = ["μ€λͺ
", "μ 보", "무μ", "λμΌ", "μ΄λ", "λꡬ", "μ", "μ΄λ»κ²", "μ’
λ₯", "κ°λ
"]
if any(kw in text for kw in greet_keywords):
return "μΈμ¬"
elif any(kw in text for kw in info_keywords):
return "μ 보μ§λ¬Έ"
else:
return "μΌμλν"
def respond(input_text):
# 1) μ¬μ©μ μ
λ ₯ κΈ°μ΅μ μ μ₯ (μνλ©΄)
memory.add(input_text)
intent = simple_intent_classifier(input_text)
if "μ΄λ¦" in input_text:
response = "μ μ΄λ¦μ Flexiμ
λλ€."
memory.add(response) # λ΅λ³λ κΈ°μ΅μ μΆκ° κ°λ₯
return response
if "λꡬ" in input_text:
response = "μ λ FlexiλΌκ³ ν΄μ."
memory.add(response)
return response
if intent == "μ 보μ§λ¬Έ":
keyword = re.sub(r"(μ λν΄|μ λν|μ λν΄μ)?\s*(μ€λͺ
ν΄μ€|μλ €μ€|λμΌ|κ°λ
|μ μ|μ 보)?", "", input_text).strip()
if not keyword:
response = "μ΄λ€ μ£Όμ μ λν΄ κΆκΈνκ°μ?"
memory.add(response)
return response
summary = summarize_from_wikipedia(keyword)
response = f"{summary}\nλ€λ₯Έ κΆκΈν μ μμΌμ κ°μ?"
memory.add(response)
return response
# κΈ°μ΅μμ μ μ¬ λ¬Έμ₯ κΊΌλ΄μ ν둬ννΈ λ§λ€κΈ°
related_memories = memory.retrieve(input_text, top_k=3)
merged_prompt = merge_prompt_with_memory(input_text, related_memories)
# λͺ¨λΈλ‘ μλ΅ μμ±
response = generate_text_sample(model, merged_prompt)
# μλ΅ κ²μ¦, μ λ§μΌλ©΄ μ¬μμ±
if not is_valid_response(response) or mismatch_tone(input_text, response):
response = generate_text_sample(model, merged_prompt)
# μ΅μ’
μλ΅λ κΈ°μ΅μ μΆκ°
memory.add(response)
return response
@app.get("/generate", response_class=PlainTextResponse)
async def generate(request: Request):
prompt = request.query_params.get("prompt", "μλ
νμΈμ")
response_text = respond(prompt)
return response_text |