Spaces:
Running
Running
import requests | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
import asyncio | |
from fastapi import FastAPI, Request | |
from fastapi.responses import StreamingResponse, PlainTextResponse | |
import sentencepiece as spm | |
import re | |
import math | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
app = FastAPI() | |
from fastapi.middleware.cors import CORSMiddleware | |
origins = [ | |
"https://insect5386.github.io", | |
"https://insect5386.github.io/insect5386" | |
] | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# SentencePiece ๋ก๋ (ํ ํฌ๋์ด์ ๋ ํน์ ํ ํฐ ID๋ ๋์ผํ๊ฒ ์ธํ ) | |
sp = spm.SentencePieceProcessor() | |
sp.load("ko_unigram4.model") | |
pad_id = sp.piece_to_id("<pad>") | |
if pad_id == -1: pad_id = 0 | |
start_id = sp.piece_to_id("<start>") | |
if start_id == -1: start_id = 1 | |
end_id = sp.piece_to_id("< end >") | |
if end_id == -1: end_id = 2 | |
unk_id = sp.piece_to_id("<unk>") | |
if unk_id == -1: unk_id = 3 | |
vocab_size = sp.get_piece_size() | |
max_len = 100 | |
def text_to_ids(text): | |
return sp.encode(text, out_type=int) | |
def ids_to_text(ids): | |
return sp.decode(ids) | |
class RotaryPositionalEmbedding(layers.Layer): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) | |
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32) | |
def call(self, x): | |
# x shape: (batch, heads, seq_len, depth) | |
batch, heads, seq_len, depth = tf.unstack(tf.shape(x)) | |
t = tf.range(seq_len, dtype=tf.float32) # (seq_len,) | |
freqs = tf.einsum('i,j->ij', t, self.inv_freq) # (seq_len, dim//2) | |
emb_sin = tf.sin(freqs) # (seq_len, dim//2) | |
emb_cos = tf.cos(freqs) # (seq_len, dim//2) | |
# (seq_len, dim//2) -> (1, 1, seq_len, dim//2) to broadcast with x | |
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1]) | |
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1]) | |
x1 = x[..., ::2] # (batch, heads, seq_len, depth//2) | |
x2 = x[..., 1::2] | |
x_rotated = tf.stack([ | |
x1 * emb_cos - x2 * emb_sin, | |
x1 * emb_sin + x2 * emb_cos | |
], axis=-1) # shape (batch, heads, seq_len, depth//2, 2) | |
x_rotated = tf.reshape(x_rotated, tf.shape(x)) # ๋ค์ (batch, heads, seq_len, depth) | |
return x_rotated | |
class GEGLU(tf.keras.layers.Layer): | |
def __init__(self, d_model, d_ff): | |
super().__init__() | |
self.proj = layers.Dense(d_ff * 2) | |
self.out = layers.Dense(d_model) | |
def call(self, x): | |
x_proj = self.proj(x) | |
x_val, x_gate = tf.split(x_proj, 2, axis=-1) | |
return self.out(x_val * tf.nn.gelu(x_gate)) | |
class KeraLuxBlock(tf.keras.layers.Layer): | |
def __init__(self, d_model, d_ff, num_heads=20, dropout_rate=0.1): | |
super().__init__() | |
self.ln1 = layers.LayerNormalization(epsilon=1e-5) | |
self.mha = layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads) | |
self.dropout1 = layers.Dropout(dropout_rate) | |
self.ln2 = layers.LayerNormalization(epsilon=1e-5) | |
self.ffn = GEGLU(d_model, d_ff) | |
self.dropout2 = layers.Dropout(dropout_rate) | |
self.rope = RotaryPositionalEmbedding(d_model // num_heads) | |
def call(self, x, training=False): | |
x_norm = self.ln1(x) | |
# MHA ์ฟผ๋ฆฌ, ํค์ RoPE ์ ์ฉ | |
batch_size = tf.shape(x_norm)[0] | |
seq_len = tf.shape(x_norm)[1] | |
num_heads = self.mha.num_heads | |
depth = (x_norm.shape[-1]) // num_heads | |
# (batch, seq_len, d_model) -> (batch, num_heads, seq_len, depth) | |
qkv = tf.reshape(x_norm, [batch_size, seq_len, num_heads, depth]) | |
qkv = tf.transpose(qkv, [0, 2, 1, 3]) # (batch, heads, seq_len, depth) | |
# RoPE ์ ์ฉ (query, key ๋ชจ๋ ๋์ผ x_norm ์ฌ์ฉํ๋ ๋ ๋ค ์ ์ฉ) | |
q = self.rope(qkv) | |
k = self.rope(qkv) | |
# ๋ค์ ์๋ shape๋ก | |
q = tf.transpose(q, [0, 2, 1, 3]) | |
q = tf.reshape(q, [batch_size, seq_len, num_heads * depth]) | |
k = tf.transpose(k, [0, 2, 1, 3]) | |
k = tf.reshape(k, [batch_size, seq_len, num_heads * depth]) | |
# MHA ํธ์ถ: query=k=v=x_norm, ํ์ง๋ง RoPE ์์ด q,k๋ก ๋์ฒด | |
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training) | |
x = x + self.dropout1(attn_out, training=training) | |
ffn_out = self.ffn(self.ln2(x)) | |
x = x + self.dropout2(ffn_out, training=training) | |
return x | |
class KeraLux(tf.keras.Model): | |
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=20, dropout_rate=0.1): | |
super().__init__() | |
self.token_embedding = layers.Embedding(vocab_size, d_model) | |
# pos_embedding ์ ๊ฑฐ | |
self.blocks = [KeraLuxBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)] | |
self.ln_f = layers.LayerNormalization(epsilon=1e-5) | |
def call(self, x, training=False): | |
seq_len = tf.shape(x)[1] | |
x = self.token_embedding(x) | |
for block in self.blocks: | |
x = block(x, training=training) | |
x = self.ln_f(x) | |
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True) | |
return logits | |
# ๋ชจ๋ธ ์์ฑ & ๊ฐ์ค์น ๋ถ๋ฌ์ค๊ธฐ | |
model = KeraLux(vocab_size=vocab_size, seq_len=max_len, d_model=160, d_ff=616, n_layers=6) | |
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # ๋ฐฐ์น1, ์ํ์ค๊ธธ์ด max_len | |
_ = model(dummy_input) # ๋ชจ๋ธ์ด ๋น๋๋จ | |
model.load_weights("KeraLux3.weights.h5") | |
print("๋ชจ๋ธ ๊ฐ์ค์น ๋ก๋ ์๋ฃ!") | |
def decode_sp_tokens(tokens): | |
text = ''.join(tokens).replace('โ', ' ').strip() | |
return text | |
def generate_text_topp(model, prompt, max_len=100, max_gen=98, p=0.9, temperature=0.8, min_len=20): | |
model_input = text_to_ids(f"<start> {prompt}") | |
model_input = model_input[:max_len] | |
generated = list(model_input) | |
text_so_far = [] | |
for step in range(max_gen): | |
pad_length = max(0, max_len - len(generated)) | |
input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id) | |
input_tensor = tf.convert_to_tensor([input_padded]) | |
logits = model(input_tensor, training=False) | |
next_token_logits = logits[0, len(generated) - 1].numpy() | |
if len(generated) >= min_len: | |
next_token_logits[end_id] -= 5.0 | |
next_token_logits[pad_id] -= 10.0 | |
logits_temp = next_token_logits / temperature | |
probs = tf.nn.softmax(logits_temp).numpy() | |
sorted_idx = np.argsort(probs)[::-1] | |
sorted_probs = probs[sorted_idx] | |
cumulative_probs = np.cumsum(sorted_probs) | |
cutoff = np.searchsorted(cumulative_probs, p, side='right') + 1 | |
filtered_indices = sorted_idx[:cutoff] | |
filtered_probs = sorted_probs[:cutoff] | |
filtered_probs /= filtered_probs.sum() | |
next_token_id = np.random.choice(filtered_indices, p=filtered_probs) | |
generated.append(int(next_token_id)) | |
next_word = sp.id_to_piece(int(next_token_id)) | |
text_so_far.append(next_word) | |
decoded_text = decode_sp_tokens(text_so_far) | |
if len(generated) >= min_len and next_token_id == end_id: | |
break | |
if len(generated) >= min_len and decoded_text.endswith(('.', '!', '?')): | |
break | |
return decoded_text | |
def respond(input_text): | |
if "์ด๋ฆ" in input_text: | |
return "์ ์ด๋ฆ์ KeraLux์ ๋๋ค." | |
if "๋๊ตฌ" in input_text: | |
return "์ ๋ KeraLux๋ผ๊ณ ํด์." | |
return generate_text_topp(model, input_text) | |
async def generate(request: Request): | |
prompt = request.query_params.get("prompt", "์๋ ํ์ธ์") | |
response_text = respond(prompt) | |
return response_text |