Spaces:
Sleeping
Sleeping
File size: 5,311 Bytes
ea1ba01 1c19c94 ea1ba01 1c19c94 ea1ba01 1c19c94 ea1ba01 1c19c94 22ea197 ea1ba01 1c19c94 ea1ba01 1c19c94 ea1ba01 22ea197 ea1ba01 1c19c94 ea1ba01 1c19c94 22ea197 1c19c94 22ea197 1c19c94 22ea197 1c19c94 22ea197 1c19c94 ea1ba01 1c19c94 ea1ba01 1c19c94 ea1ba01 1c19c94 ea1ba01 882e3b8 ea1ba01 882e3b8 1c19c94 882e3b8 ea1ba01 882e3b8 1c19c94 882e3b8 22ea197 1c19c94 882e3b8 1c19c94 882e3b8 1c19c94 882e3b8 1c19c94 e735ca8 882e3b8 22ea197 1c19c94 882e3b8 1c19c94 882e3b8 8d70ef7 1c19c94 22ea197 882e3b8 8d70ef7 882e3b8 ea1ba01 882e3b8 ea1ba01 1c19c94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
import os
import tempfile
import zipfile
from dotenv import load_dotenv
from langsmith import traceable
from app.chat import initialize_session_state, display_chat_history
from app.data_loader import get_data, load_docs
from app.document_processor import process_documents, save_vector_store_to_supabase, load_vector_store_from_supabase
from app.prompts import sahabat_prompt
from app.db import supabase
from langchain_community.llms import Replicate
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_community.document_transformers import LongContextReorder
load_dotenv()
# Supabase configuration
BUCKET_NAME = "pnp-bot-storage-archive"
VECTOR_STORE_PREFIX = "vector_store" # Changed from file name to prefix
DATA_DIR = "data"
@traceable(name="Create RAG Conversational Chain")
def create_conversational_chain(vector_store):
llm = Replicate(
model="fauziisyrinapridal/sahabat-ai-v1:afb9fa89fe786362f619fd4fef34bd1f7a4a4da23073d8a6fbf54dcbe458f216",
model_kwargs={"temperature": 0.1, "top_p": 0.9, "max_new_tokens": 6000}
)
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key='answer'
)
chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=vector_store.as_retriever(search_kwargs={"k": 6}),
combine_docs_chain_kwargs={"prompt": sahabat_prompt},
return_source_documents=True,
memory=memory
)
return chain
def reorder_embedding(docs):
reordering = LongContextReorder()
return reordering.transform_documents(docs)
def get_latest_data_timestamp(folder):
latest_time = 0
for root, _, files in os.walk(folder):
for file in files:
path = os.path.join(root, file)
file_time = os.path.getmtime(path)
latest_time = max(latest_time, file_time)
return latest_time
def get_supabase_vector_store_timestamp():
"""Get the timestamp of vector store files in Supabase storage"""
try:
response = supabase.storage.from_(BUCKET_NAME).list()
timestamps = []
for file in response:
if file['name'].startswith(VECTOR_STORE_PREFIX) and (
file['name'].endswith('.faiss') or file['name'].endswith('.pkl')
):
timestamps.append(file['updated_at'])
# Return the latest timestamp if both files exist
if len(timestamps) >= 2:
return max(timestamps)
return None
except Exception as e:
print(f"Error getting Supabase timestamp: {e}")
return None
def vector_store_is_outdated():
"""Check if vector store needs to be updated based on data folder changes"""
supabase_timestamp = get_supabase_vector_store_timestamp()
if supabase_timestamp is None:
return True
# Convert supabase timestamp to epoch time for comparison
from datetime import datetime
supabase_time = datetime.fromisoformat(supabase_timestamp.replace('Z', '+00:00')).timestamp()
data_time = get_latest_data_timestamp(DATA_DIR)
return data_time > supabase_time
@traceable(name="Main Chatbot RAG App")
@traceable(name="Main Chatbot RAG App")
def main():
initialize_session_state()
vector_store = None # Initialize first
if len(st.session_state['history']) == 0:
if vector_store_is_outdated():
with st.spinner("Memuat dan memproses dokumen..."):
get_data() # π Panggil hanya jika diperlukan
docs = load_docs()
if len(docs) > 0:
reordered_docs = reorder_embedding(docs)
vector_store = process_documents(reordered_docs)
with st.spinner("Mengunggah vector store ke Supabase..."):
success = save_vector_store_to_supabase(vector_store, supabase, BUCKET_NAME, VECTOR_STORE_PREFIX)
if success:
st.success("Vector store berhasil diunggah ke Supabase!")
else:
st.error("Gagal mengunggah vector store ke Supabase")
else:
st.warning("Folder 'data/' kosong. Chatbot tetap bisa digunakan, tapi tanpa konteks dokumen.")
vector_store = None
else:
with st.spinner("Memuat vector store dari Supabase..."):
vector_store = load_vector_store_from_supabase(supabase, BUCKET_NAME, VECTOR_STORE_PREFIX)
if vector_store:
st.success("Vector store berhasil dimuat dari Supabase!")
else:
st.error("Gagal memuat vector store dari Supabase")
else:
vector_store = st.session_state.get('vector_store')
if vector_store is None:
vector_store = load_vector_store_from_supabase(supabase, BUCKET_NAME, VECTOR_STORE_PREFIX)
st.session_state['vector_store'] = vector_store
if st.session_state['vector_store'] is not None:
chain = create_conversational_chain(st.session_state['vector_store'])
display_chat_history(chain)
if __name__ == "__main__":
main() |