Spaces:
Running
Running
import streamlit as st | |
import cv2 | |
import numpy as np | |
import tempfile | |
import os | |
# import easyocr | |
from PIL import Image, ImageDraw, ImageFont | |
from deep_translator import GoogleTranslator | |
import base64 | |
from paddleocr import PaddleOCR | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF") | |
os.environ["HF_TOKEN"] = os.getenv("HF") | |
st.set_page_config( | |
page_title="MediAssist - Prescription Analyzer", | |
layout="wide", | |
page_icon="💊" | |
) | |
def set_background(image_file): | |
with open(image_file, "rb") as image: | |
encoded = base64.b64encode(image.read()).decode() | |
st.markdown( | |
f""" | |
<style> | |
.stApp {{ | |
background-image: linear-gradient(rgba(0, 0, 0, 0.4), rgba(0, 0, 0, 0.4)), | |
url("data:image/jpg;base64,{encoded}"); | |
background-size: cover; | |
background-repeat: no-repeat; | |
background-attachment: fixed; | |
}} | |
.main-title {{ | |
color: #ffffff; | |
text-align: center; | |
font-size: 3em; | |
font-weight: 900; | |
margin-bottom: 0.2em; | |
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); | |
}} | |
.subtitle {{ | |
color: #f0f0f0; | |
text-align: center; | |
font-size: 1.4em; | |
margin-bottom: 0.5em; | |
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.6); | |
}} | |
.quote {{ | |
color: #eeeeee; | |
text-align: center; | |
font-style: italic; | |
font-size: 1.2em; | |
margin-bottom: 2em; | |
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.6); | |
}} | |
h1, h3 {{ | |
color: #ffffff !important; | |
text-shadow: 2px 2px 5px rgba(0, 0, 0, 0.8); | |
font-weight: 800; | |
}} | |
.stButton>button {{ | |
width: 100%; | |
font-size: 1.1em; | |
padding: 0.8em; | |
border-radius: 10px; | |
}} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Split large response into smaller chunks (for translation) | |
# def split_text_into_chunks(text, max_length=450): | |
# lines = text.split('\n') | |
# chunks = [] | |
# current = "" | |
# for line in lines: | |
# if len(current) + len(line) + 1 <= max_length: | |
# current += line + '\n' | |
# else: | |
# chunks.append(current.strip()) | |
# current = line + '\n' | |
# if current: | |
# chunks.append(current.strip()) | |
# return chunks | |
def save_text_as_image(text, file_path): | |
font = ImageFont.load_default() | |
lines = text.split('\n') | |
max_width = max([font.getbbox(line)[2] for line in lines]) + 20 | |
line_height = font.getbbox(text)[3] + 10 | |
img_height = line_height * len(lines) + 20 | |
img = Image.new("RGB", (max_width, img_height), "white") | |
draw = ImageDraw.Draw(img) | |
y = 10 | |
for line in lines: | |
draw.text((10, y), line, font=font, fill="black") | |
y += line_height | |
img.save(file_path) | |
return file_path | |
set_background("background_img.jpg") | |
# # OCR | |
# @st.cache_resource | |
# def load_easyocr_reader(): | |
# return easyocr.Reader(['en']) | |
st.sidebar.title("💊 MediAssist") | |
st.sidebar.markdown("Analyze prescriptions with ease using AI") | |
st.sidebar.markdown("---") | |
st.sidebar.markdown("🔗 **Connect with me:**") | |
st.sidebar.markdown(""" | |
<div style='display: flex; gap: 10px;'> | |
<a href="https://github.com/Yashvj22" target="_blank"> | |
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;"> | |
</a> | |
<a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank"> | |
<img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;"> | |
</a> | |
</div> | |
""", unsafe_allow_html=True) | |
st.sidebar.markdown("---") | |
st.markdown(""" | |
<h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1> | |
<h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3> | |
<p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p> | |
<br> | |
""", unsafe_allow_html=True) | |
uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
temp_file.write(uploaded_file.read()) | |
orig_path = temp_file.name | |
# Image preprocessing | |
image = cv2.imread(orig_path) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
_, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) | |
kernel = np.ones((3, 3), np.uint8) | |
dilated = cv2.dilate(binary_inv, kernel, iterations=1) | |
dilated_path = orig_path.replace(".png", "_dilated.png") | |
cv2.imwrite(dilated_path, dilated) | |
ocr = PaddleOCR(use_angle_cls=True, lang='en') # use_angle_cls for better orientation handling | |
result = ocr.ocr(dilated_path, cls=True) | |
text_list = [line[1][0] for line in result[0]] # Extract only text | |
text = "\n".join(text_list) | |
# reader = easyocr.Reader(['en']) | |
# text_list = reader.readtext(dilated, detail=0) | |
# text = "\n".join(text_list) | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
st.image(dilated, caption="🧾 Preprocessed Prescription", channels="GRAY", use_container_width=True) | |
with col2: | |
st.success("✅ Image Uploaded and Preprocessed") | |
st.markdown("#### 📝 Extracted Text") | |
st.code(text) | |
# Prompt LLM | |
template = """ | |
You are a helpful and structured medical assistant. | |
Below is a prescription text extracted from an image: | |
{prescription_text} | |
Your tasks: | |
1. Identify and list only the medicine names mentioned (ignore other irrelevant text). | |
2. For each identified medicine, provide the following: | |
- Dosage and Timing | |
- Possible Side Effects | |
- Special Instructions | |
🧾 Format your response clearly and neatly as follows: | |
- Medicine Name 1 | |
- Dosage and Timing: ... | |
- Side Effects: ... | |
- Special Instructions: ... | |
- Medicine Name 2 | |
- Dosage and Timing: ... | |
- Side Effects: ... | |
- Special Instructions: ... | |
Ensure each medicine starts with a new bullet point and all details are on separate lines and don't bold any bullet point. | |
""" | |
prompt = PromptTemplate(input_variables=["prescription_text"], template=template) | |
llm_model = HuggingFaceEndpoint( | |
repo_id="Qwen/Qwen3-235B-A22B", | |
provider="nebius", | |
temperature=0.6, | |
max_new_tokens=300, | |
task="conversational" | |
) | |
llm = ChatHuggingFace( | |
llm=llm_model, | |
repo_id="Qwen/Qwen3-235B-A22B", | |
provider="nebius", | |
temperature=0.6, | |
max_new_tokens=300, | |
task="conversational" | |
) | |
chain = LLMChain(llm=llm, prompt=prompt) | |
filtered_output = "" | |
hindi_text = "" | |
if st.button("🔍 Analyze Extracted Text"): | |
with st.spinner("Analyzing with LLM..."): | |
response = chain.run(prescription_text=text) | |
parts = response.split("</think>") | |
if len(parts) > 1: | |
filtered_output = parts[1].strip() | |
else: | |
filtered_output = response | |
st.markdown("#### 💡 AI-based Medicine Analysis") | |
st.text_area("LLM Output", filtered_output, height=300) | |
# Save txt and image | |
txt_path = "medicine_analysis.txt" | |
with open(txt_path, "w") as f: | |
f.write(filtered_output) | |
img_path = "medicine_analysis.png" | |
save_text_as_image(filtered_output, img_path) | |
st.markdown("#### 📥 Download (English)") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.download_button("⬇️ English TXT", data=filtered_output.encode(), file_name="medicine_analysis.txt") | |
with col2: | |
with open(img_path, "rb") as img_file: | |
st.download_button("🖼️ English Image", data=img_file, file_name="medicine_analysis.png", mime="image/png") | |
# if filtered_output and st.button("🌐 Translate to Hindi"): | |
# with st.spinner("Translating to Hindi..."): | |
# def clean_text(text): | |
# text = text.replace("•", "-") # Replace bullets | |
# text = re.sub(r"\s{2,}", " ", text) # Remove extra spaces | |
# text = re.sub(r"[^\w\s,.:-]", "", text) # Keep only safe characters | |
# return text | |
# cleaned_output = clean_text(filtered_output) | |
# try: | |
# hindi_text = GoogleTranslator(source='en', target='hi').translate(cleaned_output) | |
# except Exception as e: | |
# hindi_text = "[Translation failed]" | |
# # Formatting translated text | |
# formatted_text = re.sub(r'(?<=\s)-\s', r'\n- ', hindi_text) | |
# # Add line breaks before keywords | |
# keywords = ["खुराक और समय", "साइड इफेक्ट्स", "विशेष निर्देश"] | |
# for kw in keywords: | |
# formatted_text = formatted_text.replace(f"- {kw}", f"\n - {kw}") | |
# final_text = formatted_text.strip() | |
# st.markdown("#### 🌐 Hindi Translation") | |
# st.text_area("Translated Output (Hindi)", value=final_text, height=300) | |
# hindi_img_path = "hindi_output.png" | |
# save_text_as_image(final_text, hindi_img_path) | |
# st.markdown("#### 📥 Download (Hindi)") | |
# col3, col4 = st.columns(2) | |
# with col3: | |
# st.download_button("⬇️ Hindi TXT", data=final_text.encode(), file_name="hindi_medicine_analysis.txt") | |
# with col4: | |
# with open(hindi_img_path, "rb") as img_file: | |
# st.download_button("🖼️ Hindi Image", data=img_file, file_name="hindi_medicine_analysis.png", mime="image/png") | |
try: | |
os.remove(orig_path) | |
os.remove(dilated_path) | |
except: | |
pass | |
else: | |
st.markdown("<center><i>📸 Please Upload Scanned prescription image to get best result</i></center>", unsafe_allow_html=True) | |
# import streamlit as st | |
# import cv2 | |
# import numpy as np | |
# import tempfile | |
# import os | |
# import easyocr | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
# # Set Hugging Face API keys | |
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF") | |
# os.environ["HF_TOKEN"] = os.getenv("HF") | |
# # Streamlit page setup | |
# st.set_page_config( | |
# page_title="MediAssist - Prescription Analyzer", | |
# layout="wide", | |
# page_icon="💊" | |
# ) | |
# st.sidebar.title("💊 MediAssist") | |
# st.sidebar.markdown("Analyze prescriptions with ease using AI") | |
# st.sidebar.markdown("---") | |
# st.sidebar.markdown("🔗 **Connect with me:**") | |
# st.sidebar.markdown(""" | |
# <div style='display: flex; gap: 10px;'> | |
# <a href="https://github.com/Yashvj22" target="_blank"> | |
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;"> | |
# </a> | |
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank"> | |
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;"> | |
# </a> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# st.sidebar.markdown("---") | |
# st.markdown(""" | |
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1> | |
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3> | |
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p> | |
# <br> | |
# """, unsafe_allow_html=True) | |
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) | |
# if uploaded_file: | |
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
# temp_file.write(uploaded_file.read()) | |
# orig_path = temp_file.name | |
# # Preprocessing | |
# image = cv2.imread(orig_path) | |
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) | |
# kernel = np.ones((3, 3), np.uint8) | |
# dilated = cv2.dilate(binary_inv, kernel, iterations=1) | |
# # Save preprocessed image for future reference/removal | |
# dilated_path = orig_path.replace(".png", "_dilated.png") | |
# cv2.imwrite(dilated_path, dilated) | |
# # OCR using EasyOCR | |
# reader = easyocr.Reader(['en']) | |
# text_list = reader.readtext(dilated, detail=0) | |
# text = "\n".join(text_list) | |
# # Prompt Template | |
# template = """ | |
# You are a helpful medical assistant. | |
# Here is a prescription text extracted from an image: | |
# {prescription_text} | |
# Please do the following: | |
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text). | |
# 2. For each medicine, provide: | |
# - When to take it (timing and dosage) | |
# - Possible side effects | |
# - Any special instructions | |
# Format your answer as bullet points, listing only medicines and their details. | |
# """ | |
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template) | |
# llm_model = HuggingFaceEndpoint( | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# llm = ChatHuggingFace( | |
# llm=llm_model, | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# chain = LLMChain(llm=llm, prompt=prompt) | |
# col1, col2 = st.columns([1, 2]) | |
# with col1: | |
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True) | |
# with col2: | |
# st.success("✅ Prescription Uploaded & Preprocessed Successfully") | |
# st.markdown("### 📜 Extracted Text") | |
# st.code(text) | |
# if st.button("🔍 Analyze Text"): | |
# with st.spinner("Analyzing..."): | |
# response = chain.run(prescription_text=text) | |
# st.success(response) | |
# # Cleanup temp files | |
# os.remove(orig_path) | |
# os.remove(dilated_path) | |
# else: | |
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True) | |
# import streamlit as st | |
# import cv2 | |
# import numpy as np | |
# import tempfile | |
# import os | |
# # import pytesseract | |
# import easyocr | |
# # from langchain.document_loaders.image import UnstructuredImageLoader | |
# # from langchain_community.document_loaders import UnstructuredImageLoader | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
# # Set Hugging Face API keys | |
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF") | |
# os.environ["HF_TOKEN"] = os.getenv("HF") | |
# st.set_page_config( | |
# page_title="MediAssist - Prescription Analyzer", | |
# layout="wide", | |
# page_icon="💊" | |
# ) | |
# st.sidebar.title("💊 MediAssist") | |
# st.sidebar.markdown("Analyze prescriptions with ease using AI") | |
# st.sidebar.markdown("---") | |
# st.sidebar.markdown("🔗 **Connect with me:**") | |
# st.sidebar.markdown(""" | |
# <div style='display: flex; gap: 10px;'> | |
# <a href="https://github.com/Yashvj22" target="_blank"> | |
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;"> | |
# </a> | |
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank"> | |
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;"> | |
# </a> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# st.sidebar.markdown("---") | |
# st.markdown(""" | |
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1> | |
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3> | |
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p> | |
# <br> | |
# """, unsafe_allow_html=True) | |
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) | |
# if uploaded_file: | |
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
# temp_file.write(uploaded_file.read()) | |
# orig_path = temp_file.name | |
# # Step 1: Read and preprocess image | |
# image = cv2.imread(orig_path) | |
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) | |
# kernel = np.ones((3, 3), np.uint8) | |
# dilated = cv2.dilate(binary_inv, kernel, iterations=1) | |
# reader = easyocr.Reader(['en']) | |
# text_list = reader.readtext(dilated, detail=0) | |
# text = "\n".join(text_list) | |
# # text = pytesseract.image_to_string(dilated) | |
# # Save preprocessed image for OCR | |
# # dilated_path = orig_path.replace(".png", "_dilated.png") | |
# # cv2.imwrite(dilated_path, dilated) | |
# # loader = UnstructuredImageLoader(dilated_path) | |
# # documents = loader.load() | |
# # extracted_text = "\n".join([doc.page_content for doc in documents]) | |
# template = """ | |
# You are a helpful medical assistant. | |
# Here is a prescription text extracted from an image: | |
# {prescription_text} | |
# Please do the following: | |
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text). | |
# 2. For each medicine, provide: | |
# - When to take it (timing and dosage) | |
# - Possible side effects | |
# - Any special instructions | |
# Format your answer as bullet points, listing only medicines and their details. | |
# """ | |
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template) | |
# llm_model = HuggingFaceEndpoint( | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# model = ChatHuggingFace( | |
# llm=llm_model, | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# chain = LLMChain(llm=model, prompt=prompt) | |
# col1, col2 = st.columns([1, 2]) | |
# with col1: | |
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True) | |
# with col2: | |
# st.success("✅ Prescription Uploaded & Preprocessed Successfully") | |
# st.markdown("### 📜 Extracted Text") | |
# st.code(text) | |
# # st.code(extracted_text) | |
# if st.button("🔍 Analyze Text"): | |
# with st.spinner("Analyzing..."): | |
# response = chain.run(prescription_text=text) | |
# # response = chain.run(prescription_text=extracted_text) | |
# st.success(response) | |
# # Cleanup temp files | |
# os.remove(orig_path) | |
# os.remove(dilated_path) | |
# else: | |
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True) | |
# st.markdown("### 🌐 Translated Text") | |
# st.code("पेरासिटामोल 500 मिलीग्राम\nभोजन के बाद दिन में दो बार 1 गोली लें", language='text') | |
# st.markdown("### ⏱️ Tablet Timing & Instructions") | |
# st.info("- Morning after breakfast\n- Night after dinner\n- Take with water\n- Do not exceed 2 tablets in 24 hours") | |
# st.markdown("### ⚠️ Possible Side Effects") | |
# st.warning("- Nausea\n- Dizziness\n- Liver damage (on overdose)") | |
# os.remove(temp_path) | |
# os.remove(orig_path) | |
# os.remove(dilated_path) |